A novel mutation differential evolution for global optimization

Differential evolution DE is a simple and powerful population-based evolutionary algorithm. The success of DE in solving a specific problem crucially depends on appropriately choosing generation strategies and control parameter values. A novel mutation DE MDE is proposed to improve generation strategy DE/best/2. Adaptive mutation is conducted to current population when the population clusters around local optima. Control parameters are adapted based on constants. The performance of MDE is extensively evaluated on eighteen benchmark functions and compares favorably with the several DE variants.

[1]  Bogdan Filipic,et al.  DEMO: Differential Evolution for Multiobjective Optimization , 2005, EMO.

[2]  Harish Sharma,et al.  Fitness based Differential Evolution , 2012, Memetic Computing.

[3]  Ashish Ghosh,et al.  Moving object detection using Markov Random Field and Distributed Differential Evolution , 2014, Appl. Soft Comput..

[4]  José Neves,et al.  The fully informed particle swarm: simpler, maybe better , 2004, IEEE Transactions on Evolutionary Computation.

[5]  Huijun Gao,et al.  A Constrained Evolutionary Computation Method for Detecting Controlling Regions of Cortical Networks , 2012, IEEE/ACM Transactions on Computational Biology and Bioinformatics.

[6]  Qingfu Zhang,et al.  Differential Evolution With Composite Trial Vector Generation Strategies and Control Parameters , 2011, IEEE Transactions on Evolutionary Computation.

[7]  Jouni Lampinen,et al.  A Fuzzy Adaptive Differential Evolution Algorithm , 2005, Soft Comput..

[8]  J. Kennedy,et al.  Population structure and particle swarm performance , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[9]  Xiaodong Li,et al.  Solving Rotated Multi-objective Optimization Problems Using Differential Evolution , 2004, Australian Conference on Artificial Intelligence.

[10]  Zhijian Wu,et al.  Enhanced opposition-based differential evolution for solving high-dimensional continuous optimization problems , 2011, Soft Comput..

[11]  Jason Teo,et al.  Exploring dynamic self-adaptive populations in differential evolution , 2006, Soft Comput..

[12]  Huijun Gao,et al.  Multiobjective Identification of Controlling Areas in Neuronal Networks , 2013, IEEE/ACM Transactions on Computational Biology and Bioinformatics.

[13]  Andries Petrus Engelbrecht,et al.  Bare bones differential evolution , 2009, Eur. J. Oper. Res..

[14]  Janez Brest,et al.  Self-Adapting Control Parameters in Differential Evolution: A Comparative Study on Numerical Benchmark Problems , 2006, IEEE Transactions on Evolutionary Computation.

[15]  Carlos A. Coello Coello,et al.  Modified Differential Evolution for Constrained Optimization , 2006, 2006 IEEE International Conference on Evolutionary Computation.

[16]  Millie Pant,et al.  Improving the performance of differential evolution algorithm using Cauchy mutation , 2011, Soft Comput..

[17]  Yue Shi,et al.  A modified particle swarm optimizer , 1998, 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98TH8360).

[18]  Carlos A. Coello Coello,et al.  On the use of particle swarm optimization with multimodal functions , 2003, The 2003 Congress on Evolutionary Computation, 2003. CEC '03..

[19]  Arthur C. Sanderson,et al.  JADE: Adaptive Differential Evolution With Optional External Archive , 2009, IEEE Transactions on Evolutionary Computation.

[20]  Jing J. Liang,et al.  Comprehensive learning particle swarm optimizer for global optimization of multimodal functions , 2006, IEEE Transactions on Evolutionary Computation.

[21]  Qiu Guan,et al.  Adaptive Parameters for a Modified Comprehensive Learning Particle Swarm Optimizer , 2012 .

[22]  David H. Wolpert,et al.  No free lunch theorems for optimization , 1997, IEEE Trans. Evol. Comput..

[23]  Maurice Clerc,et al.  The particle swarm - explosion, stability, and convergence in a multidimensional complex space , 2002, IEEE Trans. Evol. Comput..

[24]  Mehmet Fatih Tasgetiren,et al.  Differential evolution algorithm with ensemble of parameters and mutation strategies , 2011, Appl. Soft Comput..

[25]  Janez Brest,et al.  Differential evolution for multiobjective optimization with self adaptation , 2007, 2007 IEEE Congress on Evolutionary Computation.

[26]  R. Storn,et al.  Differential Evolution: A Practical Approach to Global Optimization (Natural Computing Series) , 2005 .

[27]  A. Kai Qin,et al.  Self-adaptive differential evolution algorithm for numerical optimization , 2005, 2005 IEEE Congress on Evolutionary Computation.

[28]  K. Hameyer,et al.  Adaptive coupling of differential evolution and multiquadrics approximation for the tuning of the optimization process , 2000 .

[29]  Xin Yao,et al.  Self-adaptive differential evolution with neighborhood search , 2008, 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence).

[30]  Xin Yao,et al.  Evolutionary programming made faster , 1999, IEEE Trans. Evol. Comput..

[31]  Kalyan Veeramachaneni,et al.  Fitness-distance-ratio based particle swarm optimization , 2003, Proceedings of the 2003 IEEE Swarm Intelligence Symposium. SIS'03 (Cat. No.03EX706).

[32]  Xin Yao,et al.  Evolutionary programming using mutations based on the Levy probability distribution , 2004, IEEE Transactions on Evolutionary Computation.

[33]  P. N. Suganthan,et al.  Differential Evolution Algorithm With Strategy Adaptation for Global Numerical Optimization , 2009, IEEE Transactions on Evolutionary Computation.

[34]  Jun Zhang,et al.  Adaptive Particle Swarm Optimization , 2008, ANTS Conference.

[35]  Yong Lu,et al.  A robust stochastic genetic algorithm (StGA) for global numerical optimization , 2004, IEEE Transactions on Evolutionary Computation.

[36]  Rainer Storn,et al.  Differential evolution design of an IIR-filter , 1996, Proceedings of IEEE International Conference on Evolutionary Computation.

[37]  Konstantinos E. Parsopoulos,et al.  UPSO: A Unified Particle Swarm Optimization Scheme , 2019, International Conference of Computational Methods in Sciences and Engineering 2004 (ICCMSE 2004).

[38]  Andries Petrus Engelbrecht,et al.  A Cooperative approach to particle swarm optimization , 2004, IEEE Transactions on Evolutionary Computation.

[39]  Rainer Storn,et al.  Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces , 1997, J. Glob. Optim..