On the universality of Maxwell’s equations

Einstein’s theory of relativity is based on the Principle of Equivalence, Hilbert’s on invariant theory and the calculus of variations. The two paradigms are not equivalent. Using the universality of Maxwell’s equations, Hilbert’s variational method is used to determine the energy–momentum tensor uniquely, and to show that general relativity can be formulated on the basis of Maxwellian, rather than specific physical force fields. A unified field theory is proved in which the Maxwellian force fields are all on an equal footing, distinct from the geometric field.

[1]  James Clerk Maxwell,et al.  VIII. A dynamical theory of the electromagnetic field , 1865, Philosophical Transactions of the Royal Society of London.

[2]  E. Cartan,et al.  Sur certaines expressions différentielles et le problème de Pfaff , 1899 .

[3]  A. Einstein Zur Elektrodynamik bewegter Körper , 1905 .

[4]  M. Poincaré,et al.  Sur la dynamique de l’électron , 1906 .

[5]  H. Reissner,et al.  Über die Eigengravitation des elektrischen Feldes nach der Einsteinschen Theorie , 1916 .

[6]  J. Maxwell A Dynamical Theory of the Electromagnetic Field , .

[7]  L. Landau,et al.  Classical theory of fields , 1954 .

[8]  R. Wagoner,et al.  Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity , 1973 .

[9]  D. Raine General relativity , 1980, Nature.

[10]  B. Hoffmann,et al.  'Subtle Is the Lord ...': The Science and the Life of Albert Einstein , 1984 .

[11]  D. Sattinger,et al.  Lie Groups and Algebras with Applications to Physics, Geometry and Mechanics , 1986 .

[12]  W. I. Fushchich,et al.  Symmetries of Maxwell’s Equations , 1987 .

[13]  J. Pohjanpelto First order generalized symmetries of Maxwell's equations , 1988 .

[14]  H. A. Lorentz,et al.  Considerations on Gravitation , 2007 .

[15]  D. H. Sattinger,et al.  Gravitation and Special Relativity , 2013, Journal of Dynamics and Differential Equations.

[16]  Tihomir Car Lectures on Physics , 2013 .

[17]  H. Poincaré Les méthodes nouvelles de la mécanique céleste. Tome 3 , 2015 .