Fast relative guidance approach for autonomous rendezvous and docking control

Relative guidance for autonomous rendezvous and docking is a key technology for many current and future space missions, such as the unmanned on-orbit service. In these missions, it is normally required that the chaser spacecraft can plan a trajectory to the target rapidly, and control the chaser's attitude to align with the docking port of the target. This paper presents a recently developed bio-inspired virtual motion camouflage methodology to compute the optimal or near optimal orbit and attitude trajectories for relative guidance of rendezvous and docking missions rapidly. In this approach, the dimension of the optimization parameters and then the computational cost of the online trajectory planning can be reduced significantly. Multiple simulations are provided to demonstrate the capabilities of the algorithm.

[1]  Derek F Lawden,et al.  Optimal trajectories for space navigation , 1964 .

[2]  R. Melton Time-Explicit Representation of Relative Motion Between Elliptical Orbits , 2000 .

[3]  Riccardo Bevilacqua,et al.  Development and experimentation of LQR/APF guidance and control for autonomous proximity maneuvers of multiple spacecraft , 2011 .

[4]  Hanspeter Schaub,et al.  Relative Orbit Geometry Through Classical Orbit Element Differences , 2004 .

[5]  K. Alfriend,et al.  State Transition Matrix of Relative Motion for the Perturbed Noncircular Reference Orbit , 2003 .

[6]  Jan S. Hesthaven,et al.  Spectral Methods for Time-Dependent Problems: Contents , 2007 .

[7]  K. Yamanaka,et al.  New State Transition Matrix for Relative Motion on an Arbitrary Elliptical Orbit , 2002 .

[8]  Yunjun Xu,et al.  Analytical Solutions to Spacecraft Formation-Flying Guidance Using Virtual Motion Camouflage , 2010 .

[9]  Fathi H. Ghorbel,et al.  Three-pulse minimal fuel rotations of axisymmetric spacecraft using reaction control thrusters , 2003, Proceedings of the 2003 American Control Conference, 2003..

[10]  I. Michael Ross,et al.  Pseudospectral Feedback Control for Three-Axis Magnetic Attitude Stabilization in Elliptic Orbits , 2007 .

[11]  Manny R. Leinz,et al.  Orbital Express Autonomous Rendezvous and Capture Sensor System (ARCSS) flight test results , 2008, SPIE Defense + Commercial Sensing.

[12]  G. Hill Researches in the Lunar Theory , 1878 .

[13]  Yunjun Xu Subspace Optimal Control and Motion Camouflage , 2008 .

[14]  W. H. Clohessy,et al.  Terminal Guidance System for Satellite Rendezvous , 2012 .

[15]  Stephen Kemble,et al.  Automated Rendezvous and Docking of Spacecraft , 2007 .

[16]  Sagar Bhatt,et al.  ZERO PROPELLANT MANEUVER TM FLIGHT RESULTS FOR 180 ° ISS ROTATION , 2007 .

[17]  Riccardo Bevilacqua,et al.  Fuel-Optimal Spacecraft Rendezvous with Hybrid On-Off Continuous and Impulsive Thrust , 2007 .

[18]  D. C. Redding,et al.  Optimized rotation-axis attitude maneuver controller for the Space Shuttle Orbiter , 1987 .

[19]  Jonathan P. How,et al.  Safe Trajectories for Autonomous Rendezvous of Spacecraft , 2006 .

[20]  David K. Geller,et al.  Navigating the Road to Autonomous Orbital Rendezvous , 2007 .

[21]  Ou Ma,et al.  Optimal Control for Spacecraft to Rendezvous with a Tumbling Satellite in a Close Range , 2006, 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[22]  Riccardo Bevilacqua,et al.  Quasi-Optimal Control for Path Constrained Relative Spacecraft Maneuvers Based on Dynamic Programming , 2008 .

[23]  Sang-Young Park,et al.  Analytic Solution for Fuel-Optimal Reconfiguration in Relative Motion , 2009 .

[24]  Ilya Ioslovich,et al.  Arbitrary fuel-optimal attitude maneuvering of a non-symmetric space vehicle in a vehicle-fixed coordinate frame , 2003, Autom..

[25]  T. Carter State Transition Matrices for Terminal Rendezvous Studies: Brief Survey and New Example , 1998 .