Electroweak baryogenesis and Higgs signatures

We explore the connection between the strength of the electroweak phase transition and the properties of the Higgs boson. Our interest is in regions of parameter space that can realize electroweak baryogenesis. We do so in a simplified framework in which a single Higgs field couples to new scalar fields charged under $SU(3{)}_{c}$ by way of the Higgs portal. Such new scalars can make the electroweak phase transition more strongly first-order, while contributing to the effective Higgs boson couplings to gluons and photons through loop effects. For Higgs boson masses in the range $115\text{ }\text{ }\mathrm{GeV}\ensuremath{\lesssim}{m}_{h}\ensuremath{\lesssim}130\text{ }\text{ }\mathrm{GeV}$, whenever the phase transition becomes strong enough for successful electroweak baryogenesis, we find that Higgs boson properties are modified by an amount observable by the LHC. We also discuss the baryogenesis window of the minimal supersymmetric standard model (MSSM), which appears to be under tension. Furthermore, we argue that the discovery of a Higgs boson with standard model-like couplings to gluons and photons will rule out electroweak baryogenesis in the MSSM.

[1]  S. Weinberg Gauge and Global Symmetries at High Temperature , 1974 .

[2]  R. Harlander,et al.  Effects of supersymmetric QCD in hadronic Higgs production at next-to-next-to-leading order , 2003, hep-ph/0308210.

[3]  Searches for the Standard Model Scalar Boson at CMS , 2012 .

[4]  V. Kuzmin,et al.  On the Anomalous Electroweak Baryon Number Nonconservation in the Early Universe , 1985 .

[5]  Bochkarev,et al.  Model dependence of the cosmological upper bound on the Higgs-boson mass. , 1991, Physical review. D, Particles and fields.

[6]  M. Carena,et al.  The Effective Theory of the Light Stop Scenario , 2008, 0806.4297.

[7]  Marcelino B. Santos,et al.  CMS Physics Technical Design Report, Volume II: Physics Performance , 2007 .

[8]  Arnold,et al.  Erratum: Effective potential and first-order phase transitions: Beyond leading order , 1994, Physical review. D, Particles and fields.

[9]  M. Lombardo Finite temperature field theory , 2001, hep-ph/0103141.

[10]  R. Sundrum,et al.  Colored Resonances at the Tevatron: Phenomenology and Discovery Potential in Multijets , 2008, 0802.2568.

[11]  M. Hauschild,et al.  Search for Chargino and Neutralino Production at sqrt{s} = 170 and 172 GeV at LEP , 1997, hep-ex/9708018.

[12]  Q. Shafi,et al.  Impact of LHC searches on NLSP top squark and gluino mass , 2011, 1112.4461.

[13]  David J. Miller,et al.  Handbook of LHC Higgs Cross Sections: 3. Higgs Properties , 2013, 1307.1347.

[14]  J. Gunion,et al.  The Higgs Hunter's Guide , 1990 .

[15]  S. Nasri,et al.  Electroweak phase transition in the U(1) ' MSSM , 2010, 1008.3106.

[16]  A non-perturbative analysis of the finite-T phase transition in SU (2) × U (1) electroweak theory , 1996, hep-lat/9612006.

[17]  A. Djouadi The anatomy of electroweak symmetry breaking Tome II: The Higgs bosons in the Minimal Supersymmetric Model , 2005, hep-ph/0503173.

[18]  V. M. Ghete,et al.  Combined results of searches for the standard model Higgs boson in pp collisions at √s = 7 TeV , 2012 .

[19]  M. Carena,et al.  Supersymmetric Origin of Matter , 2005 .

[20]  S. P. Martin Diphoton decays of stoponium at the CERN Large Hadron Collider , 2007, 0801.0237.

[21]  C. Wagner,et al.  Electroweak Baryogenesis and Dark Matter in the nMSSM , 2004, hep-ph/0404184.

[22]  Howard E. Haber,et al.  Higgs Boson Theory and Phenomenology , 2003 .

[23]  Apostolos Pilaftsis,et al.  Higgs-Mediated Electric Dipole Moments in the MSSM: An Application to Baryogenesis and Higgs Searches , 2002, hep-ph/0207277.

[24]  R. Harlander,et al.  Hadronic Higgs Production and Decay in Supersymmetry at Next-to-Leading Order , 2003, hep-ph/0307346.

[25]  Electroweak baryon number non-conservation in the early Universe and in high-energy collisions , 1996, hep-ph/9603208.

[26]  The MSSM electroweak phase transition on the lattice , 1998, hep-lat/9804019.

[27]  Manuel Drees,et al.  Light stop searches at the LHC with monojet events , 2012, 1201.5714.

[28]  Dawson,et al.  QCD Corrections to Supersymmetric Higgs Boson Production: The Role of Squark Loops. , 1996, Physical review letters.

[29]  M. Dührssen,et al.  Extracting Higgs boson couplings from CERN LHC data , 2004, hep-ph/0406323.

[30]  M. Carena,et al.  Opening the window for electroweak baryogenesis , 1996, hep-ph/9603420.

[31]  Electroweak baryogenesis in a supersymmetric U(1)' model. , 2004, Physical review letters.

[32]  E. Richter-Was,et al.  Measuring Higgs boson couplings at the CERN LHC , 2000 .

[33]  Gabe Shaughnessy,et al.  Singlet Higgs phenomenology and the electroweak phase transition , 2007, 0705.2425.

[34]  Effective potential and first-order phase transitions: Beyond leading order. , 1993 .

[35]  Michael G. Schmidt,et al.  Electroweak baryogenesis: Concrete in a SUSY model with a gauge singlet , 2000, hep-ph/0003122.

[36]  M. Ramsey-Musolf,et al.  Higgs-Higgsino-Gaugino Induced Two Loop Electric Dipole Moments , 2008, 0806.2693.

[37]  Hiren H. Patel,et al.  Baryon washout, electroweak phase transition, and perturbation theory , 2011, 1101.4665.

[38]  C. Collaboration,et al.  Combined results of searches for the standard model Higgs boson in pp collisions at sqrt(s) = 7 TeV , 2012, 1202.1488.

[39]  R. Harlander,et al.  Supersymmetric Higgs production in gluon fusion at next-to-leading order , 2004, hep-ph/0409010.

[40]  Tilman Plehn,et al.  Determining the structure of Higgs couplings at the CERN LargeHadron Collider. , 2001, Physical review letters.

[41]  Z. Fodor,et al.  Electroweak phase transitions , 1999, hep-lat/9909162.

[42]  S. P. Martin Extra vectorlike matter and the lightest Higgs scalar boson mass in low-energy supersymmetry , 2009, 0910.2732.

[43]  A. Pierce,et al.  Electroweak Baryogenesis and Colored Scalars , 2011, 1110.0482.

[44]  Giudice Electroweak phase transition in supersymmetry. , 1992, Physical review. D, Particles and fields.

[45]  Atlas Collaboration Combined search for the Standard Model Higgs boson using up to 4.9 fb-1 of pp collision data at sqrt(s) = 7 TeV with the ATLAS detector at the LHC , 2012, 1202.1408.

[46]  F. Petriello,et al.  Color-octet scalar effects on Higgs boson production in gluon fusion , 2010, 1003.2046.

[47]  I. Low,et al.  Implications of the Higgs discovery in the MSSM golden region , 2009, 0901.0266.

[48]  W. Keung,et al.  Stoponium decays to Higgs bosons , 1988 .

[49]  Atlas Collaboration Search for massive colored scalars in four-jet final states in sqrt{s}=7 TeV proton-proton collisions with the ATLAS detector , 2011, 1110.2693.

[50]  S. Farrington,et al.  Handbook of LHC Higgs Cross Sections: 1. Inclusive Observables , 2011, 1101.0593.

[51]  C. Wagner,et al.  Electroweak baryogenesis and dark matter in a minimal extension of the MSSM , 2004 .

[52]  T. Koi,et al.  Combined search for the Standard Model Higgs boson using up to 4.9 fb[superscript −1] of pp collision data at √s = 7 TeV with the ATLAS detector at the LHC , 2012 .

[53]  Progress in electroweak baryogenesis , 1993, hep-ph/9302210.

[54]  Lian-tao Wang,et al.  Exploring the Higgs portal with 10 fb−1 at the LHC , 2011, 1112.5180.

[55]  D. Morrissey,et al.  Higgs Boson Signatures of MSSM Electroweak Baryogenesis , 2009, 0903.3038.

[56]  A. Djouadi The Anatomy of electro-weak symmetry breaking. I: The Higgs boson in the standard model , 2005, hep-ph/0503172.

[57]  Mikhail Shaposhnikov,et al.  Possible appearance of the baryon asymmetry of the universe in an electroweak theory , 1986 .

[58]  Batavia,et al.  Light Dark Matter and the Electroweak Phase Transition in the NMSSM , 2011, 1110.4378.

[59]  M. Carena,et al.  Light stop searches at the LHC in events with one hard photon or jet and missing energy , 2008, 0808.2298.

[60]  What is the Criterion for a Strong First Order Electroweak Phase Transition in Singlet Models , 2007, hep-ph/0701192.

[61]  G. Abbiendi Search for chargino and neutralino production at , 1999 .

[62]  Roberto Contino,et al.  Model-independent bounds on a light Higgs , 2012, 1202.3415.

[63]  M. Dührssen,et al.  Measuring the Higgs sector , 2009, 0904.3866.

[64]  A. Djouadi,et al.  Supersymmetric QCD corrections to Higgs boson production at hadron colliders , 1999, hep-ph/9912476.

[65]  A. Falkowski,et al.  Interpreting LHC Higgs results from natural new physics perspective , 2012, 1202.3144.

[66]  Franziska D. Hofmann,et al.  Supersymmetric Higgs production in gluon fusion , 2010, 1012.3361.

[67]  J. T. Childers,et al.  Search for massive colored scalars in four-jet final states in $\sqrt{s}=7~\mbox{TeV}$ proton–proton collisions with the ATLAS detector , 2011 .

[68]  C. Anastasiou,et al.  Two-loop QCD amplitude for gg-->h, H in the minimal supersymmetric standard model. , 2008, Physical review letters.

[69]  A. Arvanitaki,et al.  A non Standard Model Higgs at the LHC as a sign of naturalness , 2011, 1112.4835.

[70]  W. Keung,et al.  Searching for stoponium along with the Higgs boson. , 2011, Physical review letters.

[71]  Mark Trodden Electroweak Baryogenesis , 1998 .

[72]  M. L. Ferrer,et al.  Expected Performance of the ATLAS Experiment - Detector, Trigger and Physics , 2008, 0901.0512.

[73]  G. Kribs,et al.  Higgs underproduction at the LHC , 2011, 1112.2208.

[74]  Q. Shafi,et al.  Stop-neutralino coannihilation in the light of the LHC , 2011, 1111.4467.

[75]  M. Mühlleitner,et al.  Fingerprinting Higgs suspects at the LHC , 2012, 1202.3697.

[76]  M. Laine,et al.  A Strong electroweak phase transition up to m(H)similar to 105 GeV , 1998, hep-ph/9804255.