Short-Wave Infrared Diffuse Reflectance of Textile Materials

This thesis analyzes the reflectance behavior of textiles in the short-wave infrared (SWIR) band (1 – 2 microns) in order to identify/design potential diagnostic tools that allow the remote detection of human presence in a scene. Analyzing the spectral response of fabrics in the SWIR band has gained significant interest in the remote sensing community since it provides a potential path to discriminate camouflaged clothing from backgrounds that appear similar to the object of interest in the visible band. Existing research, originating primarily from the textiles community, has thoroughly documented the behavior of clothing fabrics in the visible band. Other work has shown that the differences in spectral response in the SWIR band allows for discrimination of materials that otherwise have the same visible spectral response. This work expands on those efforts in order to quantify the reflectance behavior and to better understand the physical basis for that behavior. INDEX WORDS: Diffuse reflectance, Textile materials, Short-wave infrared

[1]  A. I. D'Souza,et al.  SWIR to LWIR HDVIP HgCdTe detector array performance , 2006, SPIE Defense + Commercial Sensing.

[2]  Roger Stettner,et al.  Eye-safe laser radar focal plane array for three-dimensional imaging , 2000, Defense, Security, and Sensing.

[3]  M. Kinch,et al.  The HgCdTe electron avalanche photodiode , 2006, 2006 Digest of the LEOS Summer Topical Meetings.

[4]  M. Langlois,et al.  Society of Photo-Optical Instrumentation Engineers , 2005 .

[5]  P. Lugol Annalen der Physik , 1906 .

[6]  Daniel Dupont,et al.  Bibliographical review for reflectance of diffusing media , 2001 .

[7]  Richard N. Lane,et al.  The SWIR advantage , 1995, Optics + Photonics.

[8]  Light pollution at the Roque de los Muchachos Observatory , 2004, astro-ph/0407109.

[9]  G. Mie Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen , 1908 .

[10]  L. Richards,et al.  Multiple scattering calculations for technology. , 1971, Applied optics.

[11]  J. H. Shaw,et al.  Thermal Radiation from the Atmosphere , 1956 .

[12]  Arthur D. Broadbent,et al.  Modeling light reflection from colored filament assemblies , 2000, Optics & Photonics.

[13]  Emil W. Ciurczak,et al.  Handbook of Near-Infrared Analysis , 1992 .

[14]  Gérard Destefanis,et al.  Advanced MCT technologies in France , 2007, SPIE Defense + Commercial Sensing.

[15]  M. Papini Study of the Radiative Properties of Natural and Synthetic Fibers in the 0.25–2.5 µm Region , 1989 .

[16]  Rasmus Fensholt,et al.  Remote Sensing , 2008, Encyclopedia of GIS.

[17]  Marcelo Blanco,et al.  Analysis of cotton–polyester yarns by near-infrared reflectance spectroscopy , 1994 .

[18]  Mishri L. Vatsia Atmospheric Optical Environment , 1972 .

[19]  Larry C. Wadsworth,et al.  The Handbook of Nonwoven Filter Media , 2007 .

[20]  M. Aube,et al.  Light pollution modelling and detection in a heterogeneous environment: toward a night-time aerosol optical depth retreival method , 2005, SPIE Optics + Photonics.

[21]  A. Schuster Radiation through a foggy atmosphere , 1903 .

[22]  Timothy R. Beystrum,et al.  Low-cost PbSalt FPAs , 2004, SPIE Defense + Commercial Sensing.

[23]  J. Cook Handbook of Textile Fibres , 1968 .

[24]  P. Kubelka,et al.  New Contributions to the Optics of Intensely Light-Scattering Materials. Part I , 1948 .

[25]  L. Wallace THE OH NIGHTGLOW EMISSION , 1962 .

[26]  Van de Hulst,et al.  Multiple Light Scattering: Tables, Formulas, and Applications , 1980 .

[27]  P. Kubelka,et al.  New contributions to the optics of intensely light-scattering materials. , 1954, Journal of the Optical Society of America.

[28]  Milton Harris,et al.  Handbook of textile fibers , 1954 .

[29]  Stuart Bowyer,et al.  The 1997 reference of diffuse night sky brightness , 1998 .

[30]  G. Rybicki Radiative transfer , 2019, Climate Change and Terrestrial Ecosystem Modeling.

[31]  Robert T. Marcus,et al.  RADIATIVE TRANSFER THEORY SOLID COLOR-MATCHING CALCULATIONS , 1997 .

[32]  Ben J Hicks,et al.  SPIE - The International Society for Optical Engineering , 2001 .

[33]  Frank H. Shu,et al.  The physics of astrophysics. , 1992 .

[34]  Randy Kindsfather,et al.  Shortwave (1 to 2.8 um) imagery applications for fun and profit , 1997, Defense + Security Symposium.

[35]  Effect of particle size on diffuse reflectance infrared spectra of polystyrene spheres , 1993 .

[36]  H. C. Leong Imaging and Reflectance Spectroscopy for the Evaluation of Effective Camouflage in the SWIR , 2007 .

[37]  Ping Yuan,et al.  Characterization of InGaAsP/InP APD arrays for SWIR imaging applications , 2006, SPIE Defense + Commercial Sensing.

[38]  R. Giovanelli Reflection by Semi-infinite Diffusers , 1955 .

[39]  Sarath D. Gunapala,et al.  Progress with type-II superlattice IR detector arrays , 2007, SPIE Defense + Commercial Sensing.

[40]  Roman Ďurikovič,et al.  Prediction of optical properties of paints , 2007 .

[41]  Marvin L Birnbaum,et al.  Structure and Science , 2006, Prehospital and Disaster Medicine.

[42]  T. Sokkar,et al.  Prediction of absorbance from reflectance for an absorbing-scattering fabric , 1997 .

[43]  Marshall J. Cohen,et al.  High-resolution SWIR arrays for imaging at night , 2004, SPIE Defense + Commercial Sensing.

[44]  Douglas S. Malchow,et al.  Overview of SWIR detectors, cameras, and applications , 2008, SPIE Defense + Commercial Sensing.

[45]  P. F. Onyon Polymer Handbook , 1972, Nature.