Changing expression patterns of TonB-dependent transporters suggest shifts in polysaccharide consumption over the course of a spring phytoplankton bloom

[1]  S. Becker,et al.  Laminarin is a major molecule in the marine carbon cycle , 2020, Proceedings of the National Academy of Sciences.

[2]  R. Amann,et al.  Short-term changes in polysaccharide utilization mechanisms of marine bacterioplankton during a spring phytoplankton bloom. , 2020, Environmental microbiology.

[3]  R. Amann,et al.  Polysaccharide niche partitioning of distinct Polaribacter clades during North Sea spring algal blooms , 2020, The ISME Journal.

[4]  R. Amann,et al.  Niche differentiation among annually recurrent coastal Marine Group II Euryarchaeota , 2019, The ISME Journal.

[5]  R. Amann,et al.  In marine Bacteroidetes the bulk of glycan degradation during algae blooms is mediated by few clades using a restricted set of genes , 2019, The ISME Journal.

[6]  B. Henrissat,et al.  Bacteroidetes use thousands of enzyme combinations to break down glycans , 2019, Nature communications.

[7]  Timo Glatter,et al.  A TonB-dependent transporter is required for secretion of protease PopC across the bacterial outer membrane , 2019, Nature Communications.

[8]  Martin Eisenacher,et al.  The PRIDE database and related tools and resources in 2019: improving support for quantification data , 2018, Nucleic Acids Res..

[9]  Silvio C. E. Tosatto,et al.  The Pfam protein families database in 2019 , 2018, Nucleic Acids Res..

[10]  Donovan H. Parks,et al.  A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life , 2018, Nature Biotechnology.

[11]  T. Schweder,et al.  Biphasic cellular adaptations and ecological implications of Alteromonas macleodii degrading a mixture of algal polysaccharides , 2018, The ISME Journal.

[12]  R. Amann,et al.  Polysaccharide utilization loci of North Sea Flavobacteriia as basis for using SusC/D-protein expression for predicting major phytoplankton glycans , 2018, The ISME Journal.

[13]  J. Fuhrman,et al.  Dynamics and interactions of highly resolved marine plankton via automated high-frequency sampling , 2018, The ISME Journal.

[14]  J. Sonnenburg,et al.  Genetic Variation of the SusC/SusD Homologs from a Polysaccharide Utilization Locus Underlies Divergent Fructan Specificities and Functional Adaptation in Bacteroides thetaiotaomicron Strains , 2018, mSphere.

[15]  Ramunas Stepanauskas,et al.  Organic matter processing by microbial communities throughout the Atlantic water column as revealed by metaproteomics , 2017, Proceedings of the National Academy of Sciences.

[16]  Vincent Lombard,et al.  PULDB: the expanded database of Polysaccharide Utilization Loci , 2017, Nucleic Acids Res..

[17]  R. Amann,et al.  Recurrent patterns of microdiversity in a temperate coastal marine environment , 2017, The ISME Journal.

[18]  R. Amann,et al.  Aquatic adaptation of a laterally acquired pectin degradation pathway in marine gammaproteobacteria , 2017, Environmental microbiology.

[19]  P. Pevzner,et al.  metaSPAdes: a new versatile metagenomic assembler. , 2017, Genome research.

[20]  R. Amann,et al.  An alternative polysaccharide uptake mechanism of marine bacteria , 2017, The ISME Journal.

[21]  S. Becker,et al.  Accurate Quantification of Laminarin in Marine Organic Matter with Enzymes from Marine Microbes , 2017, Applied and Environmental Microbiology.

[22]  A. Wichels,et al.  Combined Carbohydrates Support Rich Communities of Particle-Associated Marine Bacterioplankton , 2017, Front. Microbiol..

[23]  H. Brumer,et al.  Polysaccharide Utilization Loci: Fueling Microbial Communities , 2017, Journal of bacteriology.

[24]  C. Robinson,et al.  Structural basis for nutrient acquisition by dominant members of the human gut microbiota , 2017, Nature.

[25]  M. H. Foley,et al.  The Sus operon: a model system for starch uptake by the human gut Bacteroidetes , 2016, Cellular and Molecular Life Sciences.

[26]  Peer Bork,et al.  Interactive tree of life (iTOL) v3: an online tool for the display and annotation of phylogenetic and other trees , 2016, Nucleic Acids Res..

[27]  R. Amann,et al.  Recurring patterns in bacterioplankton dynamics during coastal spring algae blooms , 2016, eLife.

[28]  J. Fuhrman,et al.  Pronounced daily succession of phytoplankton, archaea and bacteria following a spring bloom , 2016, Nature Microbiology.

[29]  Milton H. Saier,et al.  The Transporter Classification Database (TCDB): recent advances , 2015, Nucleic Acids Res..

[30]  Brian D. Ondov,et al.  Mash: fast genome and metagenome distance estimation using MinHash , 2015, Genome Biology.

[31]  Tom O. Delmont,et al.  Anvi’o: an advanced analysis and visualization platform for ‘omics data , 2015, PeerJ.

[32]  S. Voget,et al.  Different utilization of alginate and other algal polysaccharides by marine Alteromonas macleodii ecotypes. , 2015, Environmental microbiology.

[33]  J. Seifert,et al.  Catching the tip of the iceberg – Evaluation of sample preparation protocols for metaproteomic studies of the rumen microbiota , 2015, Proteomics.

[34]  Connor T. Skennerton,et al.  CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes , 2015, Genome research.

[35]  Vincent Lombard,et al.  Automatic prediction of polysaccharide utilization loci in Bacteroidetes species , 2015, Bioinform..

[36]  Eric C. Martens,et al.  Human gut Bacteroidetes can utilize yeast mannan through a selfish mechanism , 2015, Nature.

[37]  Songhui Lu,et al.  Metaproteomics reveals the major microbial players and their biogeochemical functions in a productive coastal system in the northern South China Sea. , 2014, Environmental microbiology reports.

[38]  Chao Xie,et al.  Fast and sensitive protein alignment using DIAMOND , 2014, Nature Methods.

[39]  A. Buchan,et al.  Master recyclers: features and functions of bacteria associated with phytoplankton blooms , 2014, Nature Reviews Microbiology.

[40]  Torsten Seemann,et al.  Prokka: rapid prokaryotic genome annotation , 2014, Bioinform..

[41]  Pedro M. Coutinho,et al.  The carbohydrate-active enzymes database (CAZy) in 2013 , 2013, Nucleic Acids Res..

[42]  T. Williams,et al.  The role of planktonic Flavobacteria in processing algal organic matter in coastal East Antarctica revealed using metagenomics and metaproteomics. , 2013, Environmental microbiology.

[43]  K. Katoh,et al.  MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Performance and Usability , 2013, Molecular biology and evolution.

[44]  C. Pedrós-Alió,et al.  Ecology of marine Bacteroidetes: a comparative genomics approach , 2013, The ISME Journal.

[45]  N. Jiao,et al.  Distribution and Functions of TonB-Dependent Transporters in Marine Bacteria and Environments: Implications for Dissolved Organic Matter Utilization , 2012, PloS one.

[46]  Xin Chen,et al.  dbCAN: a web resource for automated carbohydrate-active enzyme annotation , 2012, Nucleic Acids Res..

[47]  R. Amann,et al.  Substrate-Controlled Succession of Marine Bacterioplankton Populations Induced by a Phytoplankton Bloom , 2012, Science.

[48]  T. Williams,et al.  A metaproteomic assessment of winter and summer bacterioplankton from Antarctic Peninsula coastal surface waters , 2012, The ISME Journal.

[49]  A. Engel,et al.  A novel protocol for determining the concentration and composition of sugars in particulate and in high molecular weight dissolved organic matter (HMW-DOM) in seawater , 2011 .

[50]  Sean R. Eddy,et al.  Accelerated Profile HMM Searches , 2011, PLoS Comput. Biol..

[51]  G. Michel,et al.  Environmental and Gut Bacteroidetes: The Food Connection , 2011, Front. Microbio..

[52]  S. Buchanan,et al.  TonB-dependent transporters: regulation, structure, and function. , 2010, Annual review of microbiology.

[53]  E. Delong,et al.  Microbial community transcriptomes reveal microbes and metabolic pathways associated with dissolved organic matter turnover in the sea , 2010, Proceedings of the National Academy of Sciences.

[54]  E. Virginia Armbrust,et al.  pplacer: linear time maximum-likelihood and Bayesian phylogenetic placement of sequences onto a fixed reference tree , 2010, BMC Bioinformatics.

[55]  Paramvir S. Dehal,et al.  FastTree 2 – Approximately Maximum-Likelihood Trees for Large Alignments , 2010, PloS one.

[56]  Miriam L. Land,et al.  Trace: Tennessee Research and Creative Exchange Prodigal: Prokaryotic Gene Recognition and Translation Initiation Site Identification Recommended Citation Prodigal: Prokaryotic Gene Recognition and Translation Initiation Site Identification , 2022 .

[57]  David R Goodlett,et al.  Comparative metaproteomics reveals ocean-scale shifts in microbial nutrient utilization and energy transduction , 2010, The ISME Journal.

[58]  A. von Haeseler,et al.  TonB-dependent transporters and their occurrence in cyanobacteria , 2009, BMC Biology.

[59]  Brandi L. Cantarel,et al.  The Carbohydrate-Active EnZymes database (CAZy): an expert resource for Glycogenomics , 2008, Nucleic Acids Res..

[60]  B. Görke,et al.  Carbon catabolite repression in bacteria: many ways to make the most out of nutrients , 2008, Nature Reviews Microbiology.

[61]  Dmitry A Rodionov,et al.  New Substrates for Tonb-dependent Transport: Do We Only See the 'tip of the Iceberg'? , 2022 .

[62]  A. Labigne,et al.  Novel nickel transport mechanism across the bacterial outer membrane energized by the TonB/ExbB/ExbD machinery , 2007, Molecular microbiology.

[63]  Michael K. Coleman,et al.  Analyzing chromatin remodeling complexes using shotgun proteomics and normalized spectral abundance factors. , 2006, Methods.

[64]  Adam Godzik,et al.  Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences , 2006, Bioinform..

[65]  A. Nordheim,et al.  ExbBD-Dependent Transport of Maltodextrins through the Novel MalA Protein across the Outer Membrane of Caulobacter crescentus , 2005, Journal of bacteriology.

[66]  R. Aebersold,et al.  A statistical model for identifying proteins by tandem mass spectrometry. , 2003, Analytical chemistry.

[67]  D. Kirchman The ecology of Cytophaga-Flavobacteria in aquatic environments. , 2002, FEMS microbiology ecology.

[68]  M. Borodovsky,et al.  GeneMarkS: a self-training method for prediction of gene starts in microbial genomes. Implications for finding sequence motifs in regulatory regions. , 2001, Nucleic acids research.

[69]  Christopher B. Field,et al.  Biospheric Primary Production During an ENSO Transition , 2001, Science.

[70]  M. Cottrell,et al.  Natural Assemblages of Marine Proteobacteria and Members of the Cytophaga-Flavobacter Cluster Consuming Low- and High-Molecular-Weight Dissolved Organic Matter , 2000, Applied and Environmental Microbiology.

[71]  J. Randerson,et al.  Primary production of the biosphere: integrating terrestrial and oceanic components , 1998, Science.

[72]  Thomas L. Madden,et al.  Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. , 1997, Nucleic acids research.

[73]  A. Salyers,et al.  A Bacteroides thetaiotaomicron outer membrane protein that is essential for utilization of maltooligosaccharides and starch , 1996, Journal of bacteriology.

[74]  A. Salyers,et al.  Identification and Characterization of a Bacteroides Gene, csuF , Which Encodes an Outer Membrane Protein That Is Essential for Growth on Chondroitin Sulfate , 2022 .

[75]  V. Braun,et al.  Iron (III) hydroxamate transport into Escherichia coli. Substrate binding to the periplasmic FhuD protein. , 1990, The Journal of biological chemistry.

[76]  R. Kadner,et al.  Point mutations in a conserved region (TonB box) of Escherichia coli outer membrane protein BtuB affect vitamin B12 transport , 1989, Journal of bacteriology.

[77]  R. Amann,et al.  Candidatus Prosiliicoccus vernus, a spring phytoplankton bloom associated member of the Flavobacteriaceae. , 2019, Systematic and applied microbiology.