Influence of shape, size and volume fraction of phase on the magnetic properties of Nd2Fe14B/α″-Fe16N2 core-shell nanostructures magnets

[1]  Shichong Xu,et al.  The exchange coupling interaction in CoFe2O4/Fe3O4 hard and soft magnetic nanocomposites , 2020 .

[2]  T. Nga,et al.  Fabrication and exchange-spring properties of SrFe12O19@Fe3O4 nanocomposites with core-shell structure , 2020 .

[3]  Jianping Wang Environment-friendly bulk Fe16N2 permanent magnet: Review and prospective , 2020 .

[4]  R. Kurchania,et al.  Structural, magnetic and electrochemical properties of LSMO-ZnO core-shell nanostructure , 2019, Materials Chemistry and Physics.

[5]  J. Coey,et al.  Permanent Magnetism , 2019 .

[6]  Xiaohong Xu,et al.  Inserting a nonmagnetic spacer layer in Nd2Fe14B/α″-(FeCo)16N2 bilayers significantly improves their coercivity , 2019, Applied Physics A.

[7]  A. Ghasemi,et al.  Energy product enhancement in sufficiently exchange-coupled nanocomposite ferrites , 2019, Journal of Magnetism and Magnetic Materials.

[8]  Yuqing Li,et al.  Micromagnetism simulation on effects of soft phase size on Nd2Fe14B/α–Fe nanocomposite magnet with soft phase imbedded in hard phase , 2018, Chinese Physics B.

[9]  Samaneh Mesbahi-Vasey,et al.  Spin canting across core/shell Fe3O4/MnxFe3−xO4 nanoparticles , 2018, Scientific Reports.

[10]  Xiaohong Xu,et al.  Optimization of energy product and reversal process for Nd 2 Fe 14 B/α″-(FeCo) 16 N 2 /Nd 2 Fe 14 B exchange-spring trilayer films , 2017 .

[11]  G. Du,et al.  Synthesis of magnetically exchange coupled CoFe2O4/CoFe2 core/shell composite particles through spray pyrolysis , 2017 .

[12]  Xiaohong Li,et al.  Controllably Manipulating Three-Dimensional Hybrid Nanostructures for Bulk Nanocomposites with Large Energy Products. , 2017, Nano letters.

[13]  Yuanjin Zheng,et al.  Controlled one-step synthesis of CdS@ZnS core–shell particles for efficient photocatalytic hydrogen evolution , 2017 .

[14]  G. Strouse,et al.  Ligand Passivated Core–Shell FePt@Co Nanomagnets Exhibiting Enhanced Energy Product , 2016 .

[15]  Xiaohong Xu,et al.  Magnetic properties and magnetic reversal process of exchange-coupled Nd2Fe14B/α″-Fe16N2 bilayers , 2016 .

[16]  C. Fernández,et al.  Strongly Exchange Coupled Core|Shell Nanoparticles with High Magnetic Anisotropy: A Strategy toward Rare-Earth-Free Permanent Magnets , 2016 .

[17]  S. Amirthapandian,et al.  Exchange spring magnetic behavior in BaFe12O19/Fe3O4 nanocomposites , 2016 .

[18]  Y. Ming,et al.  Micromagnetic simulation of Sm—Co/α-Fe/Sm—Co trilayers with various angles between easy axes and the film plane , 2014 .

[19]  G. Salazar-Alvarez,et al.  Applications of exchange coupled bi-magnetic hard/soft and soft/hard magnetic core/shell nanoparticles , 2014, 1406.3966.

[20]  Qingfang Liu,et al.  Improved magnetic properties of SrFe12O19/FeCo core–shell nanofibers by hard/soft magnetic exchange–coupling effect , 2014 .

[21]  J. Xia,et al.  3D and 1D calculation of hysteresis loops and energy products for anisotropic nanocomposite films with perpendicular anisotropy , 2013 .

[22]  Q. Song,et al.  Controlled synthesis and magnetic properties of bimagnetic spinel ferrite CoFe2O4 and MnFe2O4 nanocrystals with core-shell architecture. , 2012, Journal of the American Chemical Society.

[23]  S. Paria,et al.  Core/shell nanoparticles: classes, properties, synthesis mechanisms, characterization, and applications. , 2012, Chemical reviews.

[24]  P. A. Kumar,et al.  Enhancement of (BH)max in a hard-soft-ferrite nanocomposite using exchange spring mechanism , 2009 .

[25]  Zuo-wei Li,et al.  Synthesis and characterization of SrFe12O19/CoFe2O4 nanocomposites with core-shell structure , 2009 .

[26]  J. Liu,et al.  Bimagnetic nanoparticles with enhanced exchange coupling and energy products , 2009 .

[27]  K. Santugini-Repiquet Homogenization of ferromagnetic multilayers in the presence of surface energies , 2007 .

[28]  Chang Woo Kim,et al.  A Study of Exchange-Coupling Effect on Nd2Fe14B / α-Fe Forming Core/Shell Shape , 2007 .

[29]  R. Seshadri,et al.  Preparation of magnetic spinel ferrite core/shell nanoparticles: Soft ferrites on hard ferrites and vice versa , 2006 .

[30]  Xiaoling Wang,et al.  Nucleation, pinning, and coercivity in magnetic nanosystems : An analytical micromagnetic approach , 2006 .

[31]  J.J. Shea,et al.  Modern magnetic materials - principles and applications [Book Review] , 2005, IEEE Electrical Insulation Magazine.

[32]  Zhong Lin Wang,et al.  Tailoring magnetic properties of core∕shell nanoparticles , 2004 .

[33]  Zhong Lin Wang,et al.  Bimagnetic Core/Shell FePt/Fe3O4 Nanoparticles , 2004 .

[34]  H. Fukunaga,et al.  Effect of strength of intergrain exchange interaction on magnetic properties of nanocomposite magnets , 1999, IEEE International Magnetics Conference.

[35]  C. H. Sowers,et al.  Exchange-spring behavior in epitaxial hard/soft magnetic bilayer films , 1998 .

[36]  T. Nagahama,et al.  Reversible magnetization process and magnetoresistance of soft-magnetic (NiFe) /hard-magnetic (CoSm) bilayers , 1996 .

[37]  J. Coey,et al.  Giant energy product in nanostructured two-phase magnets. , 1993, Physical review. B, Condensed matter.

[38]  E. Kneller,et al.  The exchange-spring magnet: a new material principle for permanent magnets , 1991 .

[39]  D. Howe Review of Permanent Magnet Applications and the Potential for High Energy Magnets , 1991 .

[40]  William Fuller Brown,et al.  Virtues and Weaknesses of the Domain Concept , 1945 .