A Bijection on Ordered Trees and Its Consequences

A bijection is introduced in the set of all ordered trees having n edges from which one derives that, for each positive integer q, the parameters “number of nodes of degree q” and “number of odd-level nodes of degree q?1” are equidistributed.

[1]  Robert Donaghey,et al.  Restricted plane tree representations of four Motzkin-Catalan equations , 1977, J. Comb. Theory, Ser. B.

[2]  Nachum Dershowitz,et al.  Applied Tree Enumerations , 1981, CAAP.

[3]  Germain Kreweras Joint distributions of three descriptive parameters of bridges , 1986 .

[4]  Doron Zeilberger Six etudes in generating functions , 1989 .

[5]  Cheng Yang,et al.  A Transformation on Ordered Trees , 1980, Comput. J..

[6]  John Riordan,et al.  Enumeration of Plane Trees by Branches and Endpoints , 1975, J. Comb. Theory, Ser. A.

[7]  D. Klarner,et al.  Correspondences between plane trees and binary sequences , 1970 .

[8]  R. A. Sulanke,et al.  Constraint-sensitive Catalan path statistics having the Narayana distribution , 1999, Discret. Math..

[9]  Philippe Flajolet,et al.  An introduction to the analysis of algorithms , 1995 .

[10]  Nachum Dershowitz,et al.  Enumerations of ordered trees , 1980, Discret. Math..

[11]  Igor Pak,et al.  Trees Associated with the Motzkin Numbers , 1996, J. Comb. Theory, Ser. A.

[12]  T. Motzkin,et al.  Relations between hypersurface cross ratios, and a combinatorial formula for partitions of a polygon, for permanent preponderance, and for non-associative products , 1948 .

[13]  M. Aigner,et al.  Motzkin Numbers , 1998, Eur. J. Comb..

[14]  Robert A. Sulanke,et al.  A symmetric variation of a distribution of Kreweras and Poupard , 1993 .

[15]  Robert A. Sulanke,et al.  Catalan path statistics having the Narayana distribution , 1998, Discret. Math..