Importance of the microscopic effects on the linewidth enhancement factor of quantum cascade lasers

Microscopic density matrix analysis on the linewidth enhancement factor (LEF) of both mid-infrared (mid-IR) and Terahertz (THz) quantum cascade lasers (QCLs) is reported, taking into account of the many body Coulomb interactions, coherence of resonant-tunneling transport and non-parabolicity. A non-zero LEF at the gain peak is obtained due to these combined microscopic effects. The results show that, for midIR QCLs, the many body Coulomb interaction and non-parabolicity contribute greatly to the non-zero LEF. In contrast, for THz QCLs, the many body Coulomb interactions and the resonant-tunneling effects greatly influence the LEF resulting in a non-zero value at the gain peak. This microscopic model not only partially explains the non-zero LEF of QCLs at the gain peak, which observed in the experiments for a while but cannot be explicitly explained, but also can be employed to improve the active region designs so as to reduce the LEF by optimizing the corresponding parameters. ©2013 Optical Society of America OCIS codes: (140.5965) Semiconductor lasers, quantum cascade; (140.3070) Infrared and farinfrared lasers; (140.0140) Lasers and laser optics. References and links 1. R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417(6885), 156–159 (2002). 2. J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264(5158), 553–556 (1994). 3. C. H. Henry, “Theory of the linewidth of semiconductor-lasers,” IEEE J. Quantum Electron. 18(2), 259–264 (1982). 4. T. Chattopadhyay and P. Bhattacharyya, “Role of linewidth enhancement factor on the frequency response of the synchronized quantum cascade laser,” Opt. Commun. 309, 349–354 (2013). 5. M. Osinski and J. Buus, “Linewidth broadening factor in semiconductor-lasers an overview,” IEEE J. Quantum Electron. 23(1), 9–29 (1987). 6. M. Lerttamrab, S. L. Chuang, C. Gmachl, D. L. Sivco, F. Capasso, and A. Y. Cho, “Linewidth enhancement factor of a type-I quantum-cascade laser,” J. Appl. Phys. 94(8), 5426–5428 (2003). 7. R. P. Green, J. H. Xu, L. Mahler, A. Tredicucci, F. Beltram, G. Giuliani, H. E. Beere, and D. A. Ritchie, “Linewidth enhancement factor of terahertz quantum cascade lasers,” Appl. Phys. Lett. 92(7), 071106 (2008). 8. T. Aellen, R. Maulini, R. Terazzi, N. Hoyler, M. Giovannini, J. Faist, S. Blaser, and L. Hvozdara, “Direct measurement of the linewidth enhancement factor by optical heterodyning of an amplitude-modulated quantum cascade laser,” Appl. Phys. Lett. 89(9), 091121 (2006). 9. J. von Staden, T. Gensty, W. Elsässer, G. Giuliani, and C. Mann, “Measurements of the α factor of a distributedfeedback quantum cascade laser by an optical feedback self-mixing technique,” Opt. Lett. 31(17), 2574–2576 (2006). 10. N. Kumazaki, Y. Takagi, M. Ishihara, K. Kasahara, A. Sugiyama, N. Akikusa, and T. Edamura, “Detuning characteristics of the linewidth enhancement factor of a midinfrared quantum cascade laser,” Appl. Phys. Lett. 92(12), 121104 (2008). #193310 $15.00 USD Received 5 Jul 2013; revised 29 Oct 2013; accepted 29 Oct 2013; published 6 Nov 2013 (C) 2013 OSA 18 November 2013 | Vol. 21, No. 23 | DOI:10.1364/OE.21.027804 | OPTICS EXPRESS 27804 11. J. Kim, M. Lerttamrab, S. L. Chuang, C. Gmachl, D. L. Sivco, F. Capasso, and A. Y. Cho, “Theoretical and experimental study of optical gain and linewidth enhancement factor of type-I quantum-cascade lasers,” IEEE J. Quantum Electron. 40(12), 1663–1674 (2004). 12. T. Liu, K. E. Lee, and Q. J. Wang, “Microscopic density matrix model for optical gain of terahertz quantum cascade lasers: Many-body, nonparabolicity, and resonant tunneling effects,” Phys. Rev. B 86(23), 235306 (2012). 13. C. Gmachl, F. Capasso, J. Faist, A. L. Hutchinson, A. Tredicucci, D. L. Sivco, J. N. Baillargeon, S. N. G. Chu, and A. Y. Cho, “Continuous-wave and high-power pulsed operation of index-coupled distributed feedback quantum cascade laser at λ≈8.5 μm,” Appl. Phys. Lett. 72(12), 1430–1432 (1998). 14. W. W. Chow, S. W. Koch, and M. S. I. I. I. Semiconductor-Laser Physics, (Springer-Verlag, Berlin, 1994). 15. S. Kumar and Q. Hu, “Coherence of resonant-tunneling transport in terahertz quantum-cascade lasers,” Phys. Rev. B 80(24), 245316 (2009). 16. C. Gmachl, F. Capasso, A. Tredicucci, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, and A. Y. Cho, “Highpower, continuous-wave, current-tunable, single-mode quantum-cascade distributed-feedback lasers at lambda ~5.2 and lambda ~7.95 μm,” Opt. Lett. 25(4), 230–232 (2000). 17. S. Fathololoumi, E. Dupont, C. W. I. Chan, Z. R. Wasilewski, S. R. Laframboise, D. Ban, A. Mátyás, C. Jirauschek, Q. Hu, and H. C. Liu, “Terahertz quantum cascade lasers operating up to ~200 K with optimized oscillator strength and improved injection tunneling,” Opt. Express 20(4), 3866–3876 (2012). 18. U. Ekenberg, “Nonparabolicity effects in a quantum well: sublevel shift, parallel mass, and Landau levels,” Phys. Rev. B Condens. Matter 40(11), 7714–7726 (1989). 19. S. Panda, B. K. Panda, and S. Fung, “Effect of conduction band nonparabolicity on the dark current in a quantum well infrared detector,” J. Appl. Phys. 101(4), 043705 (2007). 20. E. Dupont, S. Fathololoumi, and H. C. Liu, “Simplified density-matrix model applied to three-well terahertz quantum cascade lasers,” Phys. Rev. B 81(20), 205311 (2010).