On the bicriterion - minimal cost/minimal label - spanning tree problem

We address a bicriterion spanning tree problem relevant in some application fields such as telecommunication networks or transportation networks. Each edge is assigned with a cost value and a label (such as a color). The first criterion intends to minimize the total cost of the spanning tree (the summation of its edge costs), while the second intends to get the solution with a minimal number of different labels. Since these criteria, in general, are conflicting criteria we developed an algorithm to generate the set of non-dominated spanning trees. Computational experiments are presented and results discussed.

[1]  Bruce L. Golden,et al.  Worst-case behavior of the MVCA heuristic for the minimum labeling spanning tree problem , 2005, Oper. Res. Lett..

[2]  J. Kruskal On the shortest spanning subtree of a graph and the traveling salesman problem , 1956 .

[3]  R. Prim Shortest connection networks and some generalizations , 1957 .

[4]  Ronald L. Rivest,et al.  Introduction to Algorithms , 1990 .

[5]  Stefan Voß,et al.  Metaheuristics Comparison for the Minimum Labelling Spanning Tree Problem , 2005 .

[6]  Huowang Chen,et al.  The multi-criteria minimum spanning tree problem based genetic algorithm , 2007, Inf. Sci..

[7]  Sven Oliver Krumke,et al.  On the Minimum Label Spanning Tree Problem , 1998, Inf. Process. Lett..

[8]  R. van Nes,et al.  Design of multimodal transport networks: A hierarchical approach , 2002 .

[9]  Nenad Mladenovic,et al.  Greedy Randomized Adaptive Search and Variable Neighbourhood Search for the minimum labelling spanning tree problem , 2009, Eur. J. Oper. Res..

[10]  Bruce L. Golden,et al.  Improved Heuristics for the Minimum Label Spanning Tree Problem , 2006, IEEE Transactions on Evolutionary Computation.

[11]  João C. N. Clímaco,et al.  A mixed integer linear formulation for the minimum label spanning tree problem , 2009, Comput. Oper. Res..

[12]  Bruce L. Golden,et al.  A one-parameter genetic algorithm for the minimum labeling spanning tree problem , 2005, IEEE Transactions on Evolutionary Computation.

[13]  E. Lawler A PROCEDURE FOR COMPUTING THE K BEST SOLUTIONS TO DISCRETE OPTIMIZATION PROBLEMS AND ITS APPLICATION TO THE SHORTEST PATH PROBLEM , 1972 .

[14]  Toshihide Ibaraki,et al.  An Algorithm for Finding K Minimum Spanning Trees , 1981, SIAM J. Comput..

[15]  Robert E. Tarjan,et al.  Efficiency of a Good But Not Linear Set Union Algorithm , 1972, JACM.

[16]  E. Martins,et al.  A bicriterion shortest path algorithm , 1982 .

[17]  Mitsuo Gen,et al.  Genetic algorithm approach on multi-criteria minimum spanning tree problem , 1999, Eur. J. Oper. Res..

[18]  Ruay-Shiung Chang,et al.  The Minimum Labeling Spanning Trees , 1997, Inf. Process. Lett..

[19]  Harold N. Gabow,et al.  Two Algorithms for Generating Weighted Spanning Trees in Order , 1977, SIAM J. Comput..

[20]  Yupei Xiong The Minimum Labeling Spanning Tree Problem and Some Variants , 2005 .

[21]  Guoliang Chen,et al.  A note on the minimum label spanning tree , 2002, Inf. Process. Lett..

[22]  Nenad Mladenović,et al.  Constructive Heuristics for the Minimum Labelling Spanning Tree Problem: a preliminary comparison , 2006 .

[23]  Mikael Lind,et al.  On bicriterion minimal spanning trees: An approximation , 1996, Comput. Oper. Res..