On a Conjecture in Second-Order Optimality Conditions

In this paper, we deal with a conjecture formulated in Andreani et al. (Optimization 56:529–542, 2007), which states that whenever a local minimizer of a nonlinear optimization problem fulfills the Mangasarian–Fromovitz constraint qualification and the rank of the set of gradients of active constraints increases at most by one in a neighborhood of the minimizer, a second-order optimality condition that depends on one single Lagrange multiplier is satisfied. This conjecture generalizes previous results under a constant rank assumption or under a rank deficiency of at most one. We prove the conjecture under the additional assumption that the Jacobian matrix has a smooth singular value decomposition. Our proof also extends to the case of the strong second-order condition, defined in terms of the critical cone instead of the critical subspace.

[1]  Alexander Shapiro,et al.  Second Order Optimality Conditions Based on Parabolic Second Order Tangent Sets , 1999, SIAM J. Optim..

[2]  Nicholas I. M. Gould,et al.  A note on the convergence of barrier algorithms to second-order necessary points , 1999, Math. Program..

[3]  José Mario Martínez,et al.  Second-order negative-curvature methods for box-constrained and general constrained optimization , 2010, Comput. Optim. Appl..

[4]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[5]  Abdeljelil Baccari,et al.  On the Classical Necessary Second-Order Optimality Conditions in the Presence of Equality and Inequality Constraints , 2005, SIAM J. Optim..

[6]  Immanuel M. Bomze Copositivity for second-order optimality conditions in general smooth optimization problems , 2016 .

[7]  Javier M. Moguerza,et al.  An augmented Lagrangian interior-point method using directions of negative curvature , 2003, Math. Program..

[8]  Katta G. Murty,et al.  Some NP-complete problems in quadratic and nonlinear programming , 1987, Math. Program..

[9]  José Mario Martínez,et al.  Strict Constraint Qualifications and Sequential Optimality Conditions for Constrained Optimization , 2018, Math. Oper. Res..

[10]  Tosio Kato Perturbation theory for linear operators , 1966 .

[11]  J. Penot Second-Order Conditions for Optimization Problems with Constraints , 1999 .

[12]  Richard H. Byrd,et al.  A Trust Region Algorithm for Nonlinearly Constrained Optimization , 1987 .

[13]  Gabriel Haeser,et al.  An Extension of Yuan’s Lemma and Its Applications in Optimization , 2017, J. Optim. Theory Appl..

[14]  Ya-Xiang Yuan,et al.  On a subproblem of trust region algorithms for constrained optimization , 1990, Math. Program..

[15]  J. Frédéric Bonnans,et al.  Perturbation Analysis of Optimization Problems , 2000, Springer Series in Operations Research.

[16]  T. M. Williams,et al.  Practical Methods of Optimization. Vol. 1: Unconstrained Optimization , 1980 .

[17]  Fredi Tröltzsch,et al.  Second-Order Necessary and Sufficient Optimality Conditions for Optimization Problems and Applications to Control Theory , 2002, SIAM J. Optim..

[18]  Stephen J. Wright,et al.  Numerical Optimization , 2018, Fundamental Statistical Inference.

[19]  Lei Guo,et al.  Second-Order Optimality Conditions for Mathematical Programs with Equilibrium Constraints , 2013, J. Optim. Theory Appl..

[20]  A.Ya. Dubovitskii,et al.  Extremum problems in the presence of restrictions , 1965 .

[21]  L. Minchenko,et al.  On relaxed constant rank regularity condition in mathematical programming , 2011 .

[22]  Luca Dieci,et al.  Two-Parameter SVD: Coalescing Singular Values and Periodicity , 2009, SIAM J. Matrix Anal. Appl..

[23]  Aram V. Arutyunov,et al.  Second-order conditions in extremal problems. The abnormal points , 1998 .

[24]  José Mario Martínez,et al.  A Cone-Continuity Constraint Qualification and Algorithmic Consequences , 2016, SIAM J. Optim..

[25]  Laura Palagi,et al.  Convergence to Second-Order Stationary Points of a Primal-Dual Algorithm Model for Nonlinear Programming , 2005, Math. Oper. Res..

[26]  HELMUT GFRERER,et al.  Second-Order Necessary Conditions for Nonlinear Optimization Problems with Abstract Constraints: The Degenerate Case , 2007, SIAM J. Optim..

[27]  Francisco Facchinei,et al.  Convergence to Second Order Stationary Points in Inequality Constrained Optimization , 1998, Math. Oper. Res..

[28]  A. Bunse-Gerstner,et al.  Numerical computation of an analytic singular value decomposition of a matrix valued function , 1991 .

[29]  Paulo J. S. Silva,et al.  Two New Weak Constraint Qualifications and Applications , 2012, SIAM J. Optim..

[30]  L. Minchenko,et al.  On strong and weak second-order necessary optimality conditions for nonlinear programming , 2016 .

[31]  A. Rainer Quasianalytic multiparameter perturbation of polynomials and normal matrices , 2009, 0905.0837.

[32]  P. Pardalos,et al.  Checking local optimality in constrained quadratic programming is NP-hard , 1988 .

[33]  R. Tyrrell Rockafellar,et al.  Variational Analysis , 1998, Grundlehren der mathematischen Wissenschaften.

[34]  John E. Dennis,et al.  On the Convergence Theory of Trust-Region-Based Algorithms for Equality-Constrained Optimization , 1997, SIAM J. Optim..

[35]  Anthony V. Fiacco,et al.  Nonlinear programming;: Sequential unconstrained minimization techniques , 1968 .

[36]  J. M. Martínez,et al.  On second-order optimality conditions for nonlinear programming , 2007 .

[37]  F. J. Gould,et al.  A NECESSARY AND SUFFICIENT QUALIFICATION FOR CONSTRAINED OPTIMIZATION , 1971 .

[38]  R. Janin Directional derivative of the marginal function in nonlinear programming , 1984 .

[39]  Fernando M. Lobo Pereira,et al.  Second-Order Necessary Optimality Conditions for Problems Without A Priori Normality Assumptions , 2006, Math. Oper. Res..

[40]  Luca Dieci,et al.  Smoothness and Periodicity of Some Matrix Decompositions , 2000, SIAM J. Matrix Anal. Appl..

[41]  G. Haeser,et al.  A note on the smoothness of multi-parametric singular value decomposition with applications in optimization , 2017 .

[42]  M. Spivak Calculus On Manifolds: A Modern Approach To Classical Theorems Of Advanced Calculus , 2019 .

[43]  John E. Dennis,et al.  A Global Convergence Theory for General Trust-Region-Based Algorithms for Equality Constrained Optimization , 1997, SIAM J. Optim..

[44]  L. Dieci,et al.  Continuous Decompositions and Coalescing Eigenvalues for Matrices Depending on Parameters , 2014 .

[45]  Daniel P. Robinson,et al.  A stabilized SQP method: global convergence , 2017 .

[46]  E. Levitin,et al.  CONDITIONS OF HIGH ORDER FOR A LOCAL MINIMUM IN PROBLEMS WITH CONSTRAINTS , 1978 .

[47]  A. Baccari,et al.  On the Classical Necessary Second-Order Optimality Conditions , 2004 .

[48]  M. Daldoul,et al.  An application of matrix computations to classical second-order optimality conditions , 2009, Optim. Lett..

[49]  Leonid Minchenko,et al.  Parametric Nonlinear Programming Problems under the Relaxed Constant Rank Condition , 2011, SIAM J. Optim..

[50]  Paulo J. S. Silva,et al.  On second-order optimality conditions in nonlinear optimization , 2017, Optim. Methods Softw..

[51]  A. Ben-Tal Second-order and related extremality conditions in nonlinear programming , 1980 .

[52]  Paulo J. S. Silva,et al.  A relaxed constant positive linear dependence constraint qualification and applications , 2011, Mathematical Programming.

[53]  R. Andreani,et al.  Constant-Rank Condition and Second-Order Constraint Qualification , 2010 .

[54]  Paulo J. S. Silva,et al.  A second-order sequential optimality condition associated to the convergence of optimization algorithms , 2017 .

[55]  Dimitri P. Bertsekas,et al.  Nonlinear Programming , 1997 .

[56]  A. Rainer Perturbation theory for normal operators , 2011, 1111.4475.

[57]  A. Seeger,et al.  Yuan's alternative theorem and the maximization of the minimum eigenvalue function , 1994 .

[58]  Wei Yuan,et al.  A New Trust-Region Algorithm for Equality Constrained Optimization , 2002, Comput. Optim. Appl..

[59]  Franz Rellich,et al.  Perturbation Theory of Eigenvalue Problems , 1969 .

[60]  Mihai Anitescu,et al.  Degenerate Nonlinear Programming with a Quadratic Growth Condition , 1999, SIAM J. Optim..

[61]  Yu'e An,et al.  A new result on second-order necessary conditions for nonlinear programming , 2015, Oper. Res. Lett..

[62]  J. Martínez-Legaz,et al.  An Alternative Theorem for Quadratic Forms and Extensions , 1995 .

[63]  R. Fletcher Practical Methods of Optimization , 1988 .

[64]  Douglass J. Wilde,et al.  Foundations of Optimization. , 1967 .