On a Conjecture in Second-Order Optimality Conditions
暂无分享,去创建一个
Roger Behling | Gabriel Haeser | Alberto Ramos | Daiana S. Viana | G. Haeser | A. Ramos | R. Behling | Daiana S. Viana
[1] Alexander Shapiro,et al. Second Order Optimality Conditions Based on Parabolic Second Order Tangent Sets , 1999, SIAM J. Optim..
[2] Nicholas I. M. Gould,et al. A note on the convergence of barrier algorithms to second-order necessary points , 1999, Math. Program..
[3] José Mario Martínez,et al. Second-order negative-curvature methods for box-constrained and general constrained optimization , 2010, Comput. Optim. Appl..
[4] G. G. Stokes. "J." , 1890, The New Yale Book of Quotations.
[5] Abdeljelil Baccari,et al. On the Classical Necessary Second-Order Optimality Conditions in the Presence of Equality and Inequality Constraints , 2005, SIAM J. Optim..
[6] Immanuel M. Bomze. Copositivity for second-order optimality conditions in general smooth optimization problems , 2016 .
[7] Javier M. Moguerza,et al. An augmented Lagrangian interior-point method using directions of negative curvature , 2003, Math. Program..
[8] Katta G. Murty,et al. Some NP-complete problems in quadratic and nonlinear programming , 1987, Math. Program..
[9] José Mario Martínez,et al. Strict Constraint Qualifications and Sequential Optimality Conditions for Constrained Optimization , 2018, Math. Oper. Res..
[10] Tosio Kato. Perturbation theory for linear operators , 1966 .
[11] J. Penot. Second-Order Conditions for Optimization Problems with Constraints , 1999 .
[12] Richard H. Byrd,et al. A Trust Region Algorithm for Nonlinearly Constrained Optimization , 1987 .
[13] Gabriel Haeser,et al. An Extension of Yuan’s Lemma and Its Applications in Optimization , 2017, J. Optim. Theory Appl..
[14] Ya-Xiang Yuan,et al. On a subproblem of trust region algorithms for constrained optimization , 1990, Math. Program..
[15] J. Frédéric Bonnans,et al. Perturbation Analysis of Optimization Problems , 2000, Springer Series in Operations Research.
[16] T. M. Williams,et al. Practical Methods of Optimization. Vol. 1: Unconstrained Optimization , 1980 .
[17] Fredi Tröltzsch,et al. Second-Order Necessary and Sufficient Optimality Conditions for Optimization Problems and Applications to Control Theory , 2002, SIAM J. Optim..
[18] Stephen J. Wright,et al. Numerical Optimization , 2018, Fundamental Statistical Inference.
[19] Lei Guo,et al. Second-Order Optimality Conditions for Mathematical Programs with Equilibrium Constraints , 2013, J. Optim. Theory Appl..
[20] A.Ya. Dubovitskii,et al. Extremum problems in the presence of restrictions , 1965 .
[21] L. Minchenko,et al. On relaxed constant rank regularity condition in mathematical programming , 2011 .
[22] Luca Dieci,et al. Two-Parameter SVD: Coalescing Singular Values and Periodicity , 2009, SIAM J. Matrix Anal. Appl..
[23] Aram V. Arutyunov,et al. Second-order conditions in extremal problems. The abnormal points , 1998 .
[24] José Mario Martínez,et al. A Cone-Continuity Constraint Qualification and Algorithmic Consequences , 2016, SIAM J. Optim..
[25] Laura Palagi,et al. Convergence to Second-Order Stationary Points of a Primal-Dual Algorithm Model for Nonlinear Programming , 2005, Math. Oper. Res..
[26] HELMUT GFRERER,et al. Second-Order Necessary Conditions for Nonlinear Optimization Problems with Abstract Constraints: The Degenerate Case , 2007, SIAM J. Optim..
[27] Francisco Facchinei,et al. Convergence to Second Order Stationary Points in Inequality Constrained Optimization , 1998, Math. Oper. Res..
[28] A. Bunse-Gerstner,et al. Numerical computation of an analytic singular value decomposition of a matrix valued function , 1991 .
[29] Paulo J. S. Silva,et al. Two New Weak Constraint Qualifications and Applications , 2012, SIAM J. Optim..
[30] L. Minchenko,et al. On strong and weak second-order necessary optimality conditions for nonlinear programming , 2016 .
[31] A. Rainer. Quasianalytic multiparameter perturbation of polynomials and normal matrices , 2009, 0905.0837.
[32] P. Pardalos,et al. Checking local optimality in constrained quadratic programming is NP-hard , 1988 .
[33] R. Tyrrell Rockafellar,et al. Variational Analysis , 1998, Grundlehren der mathematischen Wissenschaften.
[34] John E. Dennis,et al. On the Convergence Theory of Trust-Region-Based Algorithms for Equality-Constrained Optimization , 1997, SIAM J. Optim..
[35] Anthony V. Fiacco,et al. Nonlinear programming;: Sequential unconstrained minimization techniques , 1968 .
[36] J. M. Martínez,et al. On second-order optimality conditions for nonlinear programming , 2007 .
[37] F. J. Gould,et al. A NECESSARY AND SUFFICIENT QUALIFICATION FOR CONSTRAINED OPTIMIZATION , 1971 .
[38] R. Janin. Directional derivative of the marginal function in nonlinear programming , 1984 .
[39] Fernando M. Lobo Pereira,et al. Second-Order Necessary Optimality Conditions for Problems Without A Priori Normality Assumptions , 2006, Math. Oper. Res..
[40] Luca Dieci,et al. Smoothness and Periodicity of Some Matrix Decompositions , 2000, SIAM J. Matrix Anal. Appl..
[41] G. Haeser,et al. A note on the smoothness of multi-parametric singular value decomposition with applications in optimization , 2017 .
[42] M. Spivak. Calculus On Manifolds: A Modern Approach To Classical Theorems Of Advanced Calculus , 2019 .
[43] John E. Dennis,et al. A Global Convergence Theory for General Trust-Region-Based Algorithms for Equality Constrained Optimization , 1997, SIAM J. Optim..
[44] L. Dieci,et al. Continuous Decompositions and Coalescing Eigenvalues for Matrices Depending on Parameters , 2014 .
[45] Daniel P. Robinson,et al. A stabilized SQP method: global convergence , 2017 .
[46] E. Levitin,et al. CONDITIONS OF HIGH ORDER FOR A LOCAL MINIMUM IN PROBLEMS WITH CONSTRAINTS , 1978 .
[47] A. Baccari,et al. On the Classical Necessary Second-Order Optimality Conditions , 2004 .
[48] M. Daldoul,et al. An application of matrix computations to classical second-order optimality conditions , 2009, Optim. Lett..
[49] Leonid Minchenko,et al. Parametric Nonlinear Programming Problems under the Relaxed Constant Rank Condition , 2011, SIAM J. Optim..
[50] Paulo J. S. Silva,et al. On second-order optimality conditions in nonlinear optimization , 2017, Optim. Methods Softw..
[51] A. Ben-Tal. Second-order and related extremality conditions in nonlinear programming , 1980 .
[52] Paulo J. S. Silva,et al. A relaxed constant positive linear dependence constraint qualification and applications , 2011, Mathematical Programming.
[53] R. Andreani,et al. Constant-Rank Condition and Second-Order Constraint Qualification , 2010 .
[54] Paulo J. S. Silva,et al. A second-order sequential optimality condition associated to the convergence of optimization algorithms , 2017 .
[55] Dimitri P. Bertsekas,et al. Nonlinear Programming , 1997 .
[56] A. Rainer. Perturbation theory for normal operators , 2011, 1111.4475.
[57] A. Seeger,et al. Yuan's alternative theorem and the maximization of the minimum eigenvalue function , 1994 .
[58] Wei Yuan,et al. A New Trust-Region Algorithm for Equality Constrained Optimization , 2002, Comput. Optim. Appl..
[59] Franz Rellich,et al. Perturbation Theory of Eigenvalue Problems , 1969 .
[60] Mihai Anitescu,et al. Degenerate Nonlinear Programming with a Quadratic Growth Condition , 1999, SIAM J. Optim..
[61] Yu'e An,et al. A new result on second-order necessary conditions for nonlinear programming , 2015, Oper. Res. Lett..
[62] J. Martínez-Legaz,et al. An Alternative Theorem for Quadratic Forms and Extensions , 1995 .
[63] R. Fletcher. Practical Methods of Optimization , 1988 .
[64] Douglass J. Wilde,et al. Foundations of Optimization. , 1967 .