Kinked silicon nanowires-enabled interweaving electrode configuration for lithium-ion batteries

[1]  anonymous In Review , 2018 .

[2]  J. Rolland,et al.  Mechanochemical Synthesis of PEDOT:PSS Hydrogels for Aqueous Formulation of Li-Ion Battery Electrodes. , 2017, ACS applied materials & interfaces.

[3]  J. Choi,et al.  Highly elastic binders integrating polyrotaxanes for silicon microparticle anodes in lithium ion batteries , 2017, Science.

[4]  Jian Gao,et al.  Controlling Kink Geometry in Nanowires Fabricated by Alternating Metal-Assisted Chemical Etching. , 2017, Nano letters.

[5]  Thomas M. Higgins,et al.  A Commercial Conducting Polymer as Both Binder and Conductive Additive for Silicon Nanoparticle-Based Lithium-Ion Battery Negative Electrodes. , 2016, ACS nano.

[6]  Sehee Lee,et al.  Optimized Silicon Electrode Architecture, Interface, and Microgeometry for Next‐Generation Lithium‐Ion Batteries , 2016, Advanced materials.

[7]  K. Amine,et al.  Silicon-Copper Helical Arrays for New Generation Lithium Ion Batteries. , 2015, Nano letters.

[8]  Yanjie Hu,et al.  Face‐to‐Face Contact and Open‐Void Coinvolved Si/C Nanohybrids Lithium‐Ion Battery Anodes with Extremely Long Cycle Life , 2015 .

[9]  Tae-Hee Kim,et al.  All-in-one assembly based on 3D-intertangled and cross-jointed architectures of Si/Cu 1D-nanowires for lithium ion batteries , 2015, Scientific Reports.

[10]  Sehee Lee,et al.  Stable silicon-ionic liquid interface for next-generation lithium-ion batteries , 2015, Nature Communications.

[11]  L. Brassart,et al.  Surface coating mediated swelling and fracture of silicon nanowires during lithiation. , 2014, ACS nano.

[12]  W. K. Choi,et al.  Synthesis of free-standing, curved Si nanowires through mechanical failure of a catalyst during metal assisted chemical etching. , 2014, Physical chemistry chemical physics : PCCP.

[13]  Sehee Lee,et al.  Hierarchical Porous Framework of Si‐Based Electrodes for Minimal Volumetric Expansion , 2014, Advanced materials.

[14]  Hyun-Wook Lee,et al.  A pomegranate-inspired nanoscale design for large-volume-change lithium battery anodes. , 2014, Nature nanotechnology.

[15]  Jung Woo Lee,et al.  Surface‐Coverage‐Dependent Cycle Stability of Core‐Shell Nanostructured Electrodes for Use in Lithium Ion Batteries , 2014 .

[16]  W. K. Choi,et al.  Mechanics of Catalyst Motion during Metal Assisted Chemical Etching of Silicon , 2013 .

[17]  Chunsheng Wang,et al.  Hoop-strong nanotubes for battery electrodes. , 2013, ACS nano.

[18]  Xiaolin Zheng,et al.  Electroassisted transfer of vertical silicon wire arrays using a sacrificial porous silicon layer. , 2013, Nano letters.

[19]  Zhifeng Huang,et al.  Porosification-Induced Back-Bond Weakening in Chemical Etching of n-Si(111) , 2013 .

[20]  E. Tholén,et al.  Interpreting motion and force for narrow-band intermodulation atomic force microscopy , 2013, Beilstein journal of nanotechnology.

[21]  Jim Benson,et al.  Ultra strong silicon-coated carbon nanotube nonwoven fabric as a multifunctional lithium-ion battery anode. , 2012, ACS nano.

[22]  Z. Suo,et al.  Kinetics of initial lithiation of crystalline silicon electrodes of lithium-ion batteries. , 2012, Nano letters.

[23]  B. Korgel,et al.  Influences of gold, binder and electrolyte on silicon nanowire performance in Li-ion batteries , 2012 .

[24]  Hartmut S. Leipner,et al.  Model for the Mass Transport during Metal-Assisted Chemical Etching with Contiguous Metal Films As Catalysts , 2012 .

[25]  Daniel Platz,et al.  Model-based extraction of material properties in multifrequency atomic force microscopy , 2012 .

[26]  B. Lucht,et al.  Quantifying capacity loss due to solid-electrolyte-interphase layer formation on silicon negative electrodes in lithium-ion batteries , 2012, 1205.5335.

[27]  Xiaolin Zheng,et al.  Fabrication of flexible and vertical silicon nanowire electronics. , 2012, Nano letters.

[28]  Yi Cui,et al.  Stable cycling of double-walled silicon nanotube battery anodes through solid-electrolyte interphase control. , 2012, Nature nanotechnology.

[29]  Yi Cui,et al.  Fracture of crystalline silicon nanopillars during electrochemical lithium insertion , 2012, Proceedings of the National Academy of Sciences.

[30]  E. Tholén,et al.  The role of nonlinear dynamics in quantitative atomic force microscopy , 2012, Nanotechnology.

[31]  B. Lucht,et al.  Performance Enhancing Electrolyte Additives for Lithium Ion Batteries with Silicon Anodes , 2012 .

[32]  G. Yushin,et al.  A Major Constituent of Brown Algae for Use in High-Capacity Li-Ion Batteries , 2011, Science.

[33]  Xiaofeng Qian,et al.  Lithiation-induced embrittlement of multiwalled carbon nanotubes. , 2011, ACS nano.

[34]  Woo Lee,et al.  Curved silicon nanowires with ribbon-like cross sections by metal-assisted chemical etching. , 2011, ACS nano.

[35]  Woo Lee,et al.  Au/Ag bilayered metal mesh as a si etching catalyst for controlled fabrication of si nanowires. , 2011, ACS nano.

[36]  Zhipeng Huang,et al.  Metal‐Assisted Chemical Etching of Silicon: A Review , 2011, Advanced materials.

[37]  Yi Cui,et al.  Thin, flexible secondary Li-ion paper batteries. , 2010, ACS nano.

[38]  Mauro Ferrari,et al.  Biodegradable Porous Silicon Barcode Nanowires with Defined Geometry , 2010, Advanced functional materials.

[39]  Yi Cui,et al.  Light-weight free-standing carbon nanotube-silicon films for anodes of lithium ion batteries. , 2010, ACS nano.

[40]  Zhipeng Huang,et al.  Oxidation Rate Effect on the Direction of Metal-Assisted Chemical and Electrochemical Etching of Silicon , 2010 .

[41]  G. Yushin,et al.  High-performance lithium-ion anodes using a hierarchical bottom-up approach. , 2010, Nature materials.

[42]  J. Goodenough,et al.  Challenges for Rechargeable Li Batteries , 2010 .

[43]  Nadine Geyer,et al.  Ordered arrays of vertically aligned [110] silicon nanowires by suppressing the crystallographically preferred <100> etching directions. , 2009, Nano letters.

[44]  Nathan S. Lewis,et al.  Flexible Polymer‐Embedded Si Wire Arrays , 2009 .

[45]  Candace K. Chan,et al.  Crystalline-amorphous core-shell silicon nanowires for high capacity and high current battery electrodes. , 2009, Nano letters.

[46]  Gregory T. Carroll,et al.  Toward a Universal Method To Pattern Metals on a Polymer , 2008 .

[47]  T. Yen,et al.  Morphological Control of Single‐Crystalline Silicon Nanowire Arrays near Room Temperature , 2008 .

[48]  Kui‐Qing Peng,et al.  Motility of Metal Nanoparticles in Silicon and Induced Anisotropic Silicon Etching , 2008 .

[49]  Zhipeng Huang,et al.  Extended arrays of vertically aligned sub-10 nm diameter [100] Si nanowires by metal-assisted chemical etching. , 2008, Nano letters.

[50]  Daniel Platz,et al.  Intermodulation atomic force microscopy , 2008 .

[51]  M. Armand,et al.  Building better batteries , 2008, Nature.

[52]  Candace K. Chan,et al.  High-performance lithium battery anodes using silicon nanowires. , 2008, Nature nanotechnology.

[53]  Zhipeng Huang,et al.  Fabrication of Silicon Nanowire Arrays with Controlled Diameter, Length, and Density , 2007 .

[54]  Kevin W. Eberman,et al.  Colossal Reversible Volume Changes in Lithium Alloys , 2001 .

[55]  Otto Zhou,et al.  Alloy Formation in Nanostructured Silicon , 2001 .