Variational learning across domains with triplet information.

The work investigates deep generative models, which allow us to use training data from one domain to build a model for another domain. We propose the Variational Bi-domain Triplet Autoencoder (VBTA) that learns a joint distribution of objects from different domains. We extend the VBTAs objective function by the relative constraints or triplets that sampled from the shared latent space across domains. In other words, we combine the deep generative models with a metric learning ideas in order to improve the final objective with the triplets information. The performance of the VBTA model is demonstrated on different tasks: image-to-image translation, bi-directional image generation and cross-lingual document classification.

[1]  Masahiro Suzuki,et al.  Joint Multimodal Learning with Deep Generative Models , 2016, ICLR.

[2]  Philipp Koehn,et al.  Moses: Open Source Toolkit for Statistical Machine Translation , 2007, ACL.

[3]  Jan Kautz,et al.  Unsupervised Image-to-Image Translation Networks , 2017, NIPS.

[4]  David J. Fleet,et al.  Hamming Distance Metric Learning , 2012, NIPS.

[5]  Honglak Lee,et al.  Deep Variational Canonical Correlation Analysis , 2016, ArXiv.

[6]  James Philbin,et al.  FaceNet: A unified embedding for face recognition and clustering , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[7]  Max Welling,et al.  Auto-Encoding Variational Bayes , 2013, ICLR.

[8]  Philipp Koehn,et al.  Europarl: A Parallel Corpus for Statistical Machine Translation , 2005, MTSUMMIT.

[9]  Kevin Gimpel,et al.  Towards Universal Paraphrastic Sentence Embeddings , 2015, ICLR.

[10]  Deyi Xiong,et al.  BattRAE: Bidimensional Attention-Based Recursive Autoencoders for Learning Bilingual Phrase Embeddings , 2016, AAAI.

[11]  Hugo Larochelle,et al.  An Autoencoder Approach to Learning Bilingual Word Representations , 2014, NIPS.

[12]  Zhe Gan,et al.  Triangle Generative Adversarial Networks , 2017, NIPS.

[13]  Ping Tan,et al.  DualGAN: Unsupervised Dual Learning for Image-to-Image Translation , 2017, 2017 IEEE International Conference on Computer Vision (ICCV).

[14]  Marc Sebban,et al.  A Survey on Metric Learning for Feature Vectors and Structured Data , 2013, ArXiv.

[15]  Yang Liu,et al.  Bilingual Correspondence Recursive Autoencoder for Statistical Machine Translation , 2015, EMNLP.

[16]  Jimmy Ba,et al.  Adam: A Method for Stochastic Optimization , 2014, ICLR.

[17]  Joshua B. Tenenbaum,et al.  Deep Convolutional Inverse Graphics Network , 2015, NIPS.

[18]  Chris Callison-Burch,et al.  Open Source Toolkit for Statistical Machine Translation: Factored Translation Models and Lattice Decoding , 2006 .

[19]  Xiaogang Wang,et al.  Deep Learning Face Attributes in the Wild , 2014, 2015 IEEE International Conference on Computer Vision (ICCV).

[20]  Max Welling,et al.  Semi-supervised Learning with Deep Generative Models , 2014, NIPS.

[21]  Kevin Murphy,et al.  Generative Models of Visually Grounded Imagination , 2017, ICLR.

[22]  Alexei A. Efros,et al.  Image-to-Image Translation with Conditional Adversarial Networks , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[23]  Yoshua Bengio,et al.  A Recurrent Latent Variable Model for Sequential Data , 2015, NIPS.

[24]  Zhi-Hong Deng,et al.  A Variational Autoencoding Approach for Inducing Cross-lingual Word Embeddings , 2017, IJCAI.

[25]  Yoshua Bengio,et al.  Gradient-based learning applied to document recognition , 1998, Proc. IEEE.

[26]  Shan Wu,et al.  A neural generative autoencoder for bilingual word embeddings , 2018, Inf. Sci..

[27]  Yiming Yang,et al.  RCV1: A New Benchmark Collection for Text Categorization Research , 2004, J. Mach. Learn. Res..

[28]  Yoshua Bengio,et al.  BilBOWA: Fast Bilingual Distributed Representations without Word Alignments , 2014, ICML.

[29]  Yoshua Bengio,et al.  Generative Adversarial Nets , 2014, NIPS.

[30]  Serge J. Belongie,et al.  Bayesian representation learning with oracle constraints , 2015, ICLR 2016.

[31]  Quoc V. Le,et al.  Exploiting Similarities among Languages for Machine Translation , 2013, ArXiv.

[32]  拓海 杉山,et al.  “Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks”の学習報告 , 2017 .

[33]  Ivan Titov,et al.  Inducing Crosslingual Distributed Representations of Words , 2012, COLING.