Uniqueness of Bounded Solutions to Aggregation Equations by Optimal Transport Methods

We show how to extend the method used in [22] to prove uniqueness of solutions to a family of several nonlocal equations containing aggregation terms and aggregation/diusion competition. They contain several mathematical biology models proposed in macroscopic descriptions of swarming and chemotaxis for the evolution of mass densities of individuals or cells. Uniqueness is shown for bounded nonnegative mass-preserving weak solutions without diusion. In diusive cases, we use a coupling method [16, 33] and thus, we need an stochastic representation of the solution to hold. In summary, our results show, modulo certain technical hypotheses, that nonnegative mass-preserving solutions remain unique as long as their L 1 -norm is controlled in time.

[1]  Benoît Perthame,et al.  Optimal critical mass in the two dimensional Keller–Segel model in R2 , 2004 .

[2]  Emanuele Caglioti,et al.  A Non-Maxwellian Steady Distribution for One-Dimensional Granular Media , 1998 .

[3]  Andrew J. Majda,et al.  Vorticity and Incompressible Flow: Index , 2001 .

[4]  Mario Pulvirenti,et al.  Mathematical Theory of Incompressible Nonviscous Fluids , 1993 .

[5]  Y. Brenier Polar Factorization and Monotone Rearrangement of Vector-Valued Functions , 1991 .

[6]  C. Villani Topics in Optimal Transportation , 2003 .

[7]  P. Cattiaux,et al.  Probabilistic approach for granular media equations in the non-uniformly convex case , 2006, math/0603541.

[8]  G. Burton TOPICS IN OPTIMAL TRANSPORTATION (Graduate Studies in Mathematics 58) By CÉDRIC VILLANI: 370 pp., US$59.00, ISBN 0-8218-3312-X (American Mathematical Society, Providence, RI, 2003) , 2004 .

[9]  Benoît Perthame,et al.  Global Solutions of Some Chemotaxis and Angiogenesis Systems in High Space Dimensions , 2004 .

[10]  Andrea L. Bertozzi,et al.  Finite-Time Blow-up of Solutions of an Aggregation Equation in Rn , 2007 .

[11]  L. Segel,et al.  Initiation of slime mold aggregation viewed as an instability. , 1970, Journal of theoretical biology.

[12]  C. Villani Optimal Transport: Old and New , 2008 .

[13]  C. Villani,et al.  Contractions in the 2-Wasserstein Length Space and Thermalization of Granular Media , 2006 .

[14]  L. Ambrosio,et al.  Gradient Flows: In Metric Spaces and in the Space of Probability Measures , 2005 .

[15]  E. Caglioti,et al.  A kinetic equation for granular media , 2009 .

[16]  S. Hanson,et al.  Real World Applications , 1997 .

[17]  R. McCann A Convexity Principle for Interacting Gases , 1997 .

[18]  G. Loeper Uniqueness of the solution to the Vlasov-Poisson system with bounded density , 2005 .

[19]  Andrea L. Bertozzi,et al.  Blow-up in multidimensional aggregation equations with mildly singular interaction kernels , 2009 .

[20]  Martin Burger,et al.  On an aggregation model with long and short range interactions , 2007 .

[21]  Thomas Laurent,et al.  Local and Global Existence for an Aggregation Equation , 2007 .

[22]  José A. Carrillo,et al.  Infinite Time Aggregation for the Critical Patlak-Keller-Segel model in R 2 , 2007 .

[23]  W. Gangbo,et al.  The geometry of optimal transportation , 1996 .

[24]  Martin Burger,et al.  Large time behavior of nonlocal aggregation models with nonlinear diffusion , 2008, Networks Heterog. Media.

[25]  Akira Ogawa,et al.  Vorticity and Incompressible Flow. Cambridge Texts in Applied Mathematics , 2002 .

[26]  D. Morale,et al.  An interacting particle system modelling aggregation behavior: from individuals to populations , 2005, Journal of mathematical biology.

[27]  C. Villani,et al.  Kinetic equilibration rates for granular media and related equations: entropy dissipation and mass transportation estimates , 2003 .

[28]  C. Patlak Random walk with persistence and external bias , 1953 .

[29]  Vincenzo Capasso,et al.  Modeling the aggregative behavior of ants of the species Polyergus rufescens , 2000 .

[30]  Yann Brenier,et al.  A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem , 2000, Numerische Mathematik.

[31]  Giuseppe Toscani,et al.  One-dimensional kinetic models of granular flows , 2000 .

[32]  Benoît Perthame,et al.  Two-dimensional Keller-Segel model: Optimal critical mass and qualitative properties of the solutions , 2006 .

[33]  S. Méléard Asymptotic behaviour of some interacting particle systems; McKean-Vlasov and Boltzmann models , 1996 .

[34]  Andrea L. Bertozzi,et al.  Swarming Patterns in a Two-Dimensional Kinematic Model for Biological Groups , 2004, SIAM J. Appl. Math..

[35]  A. Bertozzi,et al.  A Nonlocal Continuum Model for Biological Aggregation , 2005, Bulletin of mathematical biology.