A Survey on Data Processing Issues in Wireless Sensor Networks for Enterprise Information Infrastructure

Wireless sensor networks (WSNs) are a key technology for a broad range of applications such as environmental and habitat monitoring, traffic control, health monitoring, supply-chain management, smart homes, security, and surveillance systems [16]. A WSN is collection of a large number of inexpensive devices capable of sensing certain physical phenomena, carrying out simple processing tasks, as well as communicating with each other using wireless networking technology in an adhoc manner. As the evolution of sensors follows Moore’s law, sensors become smaller, cheaper, and more powerful. This evolution enables the deployment of systems that can consist of hundreds or thousands of sensor nodes. Typically, sensor networks are deployed to gather physical information in a robust and autonomous manner. The data collection can be either continuous or selective, i.e., detect selected events of interest. Since sensor nodes are small battery-powered devices that are deployed in potentially inaccessible environments, energy efficiency is of paramount importance. Communication, in particular, is an expensive operation for sensor nodes, and is significantly more expensive than data processing. Although the energy efficiency of sensor nodes has certainly improved over recent years with new hardware developments (such as more powerful processors or larger memory), the main issues in wireless sensor networking remain as:

[1]  James R. Bell,et al.  Threaded code , 1973, CACM.

[2]  William B. Ackerman,et al.  Data Flow Languages , 1899, Computer.

[3]  David Robson,et al.  Smalltalk-80: The Language and Its Implementation , 1983 .

[4]  Christopher W. Fraser,et al.  Analyzing and compressing assembly code , 1984, SIGPLAN '84.

[5]  Philippe Flajolet,et al.  Probabilistic Counting Algorithms for Data Base Applications , 1985, J. Comput. Syst. Sci..

[6]  Bjarne Stroustrup,et al.  C++ Programming Language , 1986, IEEE Softw..

[7]  K. W. Leary,et al.  DSP/C: a standard high level language for DSP and numeric processing , 1990, International Conference on Acoustics, Speech, and Signal Processing.

[8]  Hassan Aït-Kaci,et al.  Warren's Abstract Machine: A Tutorial Reconstruction , 1991 .

[9]  Jonathan Rees,et al.  A tractable Scheme implementation , 1994, LISP Symb. Comput..

[10]  M. Kozuch,et al.  Compression of embedded system programs , 1994, Proceedings 1994 IEEE International Conference on Computer Design: VLSI in Computers and Processors.

[11]  Todd A. Proebsting Optimizing an ANSI C interpreter with superoperators , 1995, POPL '95.

[12]  S. Tucker Taft,et al.  Ada 95 Reference Manual , 1995, Lecture Notes in Computer Science.

[13]  Guy L. Steele,et al.  The Java Language Specification , 1996 .

[14]  Frank Yellin,et al.  The Java Virtual Machine Specification , 1996 .

[15]  Charles Consel,et al.  Harissa: A Flexible and Efficient Java Environment Mixing Bytecode and Compiled Code , 1997, COOTS.

[16]  Biswanath Mukherjee,et al.  DIDS (distributed intrusion detection system)—motivation, architecture, and an early prototype , 1997 .

[17]  Kurt Keutzer,et al.  Code density optimization for embedded DSP processors using data compression techniques , 1998, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[18]  R. N. Horspool,et al.  JAZZ: an efficient compressed format for Java archive files , 1998, CASCON.

[19]  Wayne H. Wolf,et al.  Code compression for embedded systems , 1998, Proceedings 1998 Design and Automation Conference. 35th DAC. (Cat. No.98CH36175).

[20]  ドキュメントシステム Microsoft Windows CEプログラマーズガイド , 1998 .

[21]  Hagit Attiya,et al.  Distributed Computing: Fundamentals, Simulations and Advanced Topics , 1998 .

[22]  Keith D. Cooper,et al.  Enhanced code compression for embedded RISC processors , 1999, PLDI '99.

[23]  Flemming Nielson,et al.  Principles of Program Analysis , 1999, Springer Berlin Heidelberg.

[24]  William Pugh,et al.  Compressing Java class files , 1999, PLDI '99.

[25]  Joseph M. Hellerstein,et al.  Eddies: continuously adaptive query processing , 2000, SIGMOD '00.

[26]  Rainer Leupers,et al.  Code optimization techniques for embedded processors - methods, algorithms, and tools , 2000 .

[27]  Ulrik Pagh Schultz,et al.  Java bytecode compression for low-end embedded systems , 2000, TOPL.

[28]  David R. Karger,et al.  A scalable location service for geographic ad hoc routing , 2000, MobiCom '00.

[29]  Gregory J. Pottie,et al.  Wireless integrated network sensors , 2000, Commun. ACM.

[30]  Marcin Paprzycki,et al.  Distributed Computing: Fundamentals, Simulations and Advanced Topics , 2001, Scalable Comput. Pract. Exp..

[31]  Philippe Bonnet,et al.  Towards Sensor Database Systems , 2001, Mobile Data Management.

[32]  Deborah Estrin,et al.  Geography-informed energy conservation for Ad Hoc routing , 2001, MobiCom '01.

[33]  Wei Hong,et al.  Proceedings of the 5th Symposium on Operating Systems Design and Implementation Tag: a Tiny Aggregation Service for Ad-hoc Sensor Networks , 2022 .

[34]  Mani Srivastava,et al.  A framework for efficient and programmable sensor networks , 2002, 2002 IEEE Open Architectures and Network Programming Proceedings. OPENARCH 2002 (Cat. No.02EX571).

[35]  Saumya K. Debray,et al.  Profile-guided code compression , 2002, PLDI '02.

[36]  Philip Levis,et al.  Maté: a tiny virtual machine for sensor networks , 2002, ASPLOS X.

[37]  Anantha P. Chandrakasan,et al.  An application-specific protocol architecture for wireless microsensor networks , 2002, IEEE Trans. Wirel. Commun..

[38]  Yong Yao,et al.  The cougar approach to in-network query processing in sensor networks , 2002, SGMD.

[39]  David Gregg,et al.  Vmgen—a generator of efficient virtual machine interpreters , 2002, Softw. Pract. Exp..

[40]  Feng Zhao,et al.  State-Centric Programming for Sensor-Actuator Network Systems , 2003, IEEE Pervasive Comput..

[41]  Kannan Ramchandran,et al.  A distributed and adaptive signal processing approach to reducing energy consumption in sensor networks , 2003, IEEE INFOCOM 2003. Twenty-second Annual Joint Conference of the IEEE Computer and Communications Societies (IEEE Cat. No.03CH37428).

[42]  Young-Jin Kim,et al.  Multi-dimensional range queries in sensor networks , 2003, SenSys '03.

[43]  Deborah Estrin,et al.  Data-Centric Storage in Sensornets with GHT, a Geographic Hash Table , 2003, Mob. Networks Appl..

[44]  Rajmohan Rajaraman,et al.  The Cougar Project: a work-in-progress report , 2003, SGMD.

[45]  Murat Demirbas,et al.  Peer-to-peer spatial queries in sensor networks , 2003, Proceedings Third International Conference on Peer-to-Peer Computing (P2P2003).

[46]  Deborah Estrin,et al.  Dimensions: why do we need a new data handling architecture for sensor networks? , 2003, CCRV.

[47]  Mary Lou Soffa,et al.  Predicting the impact of optimizations for embedded systems , 2003, LCTES '03.

[48]  Vinod Yegneswaran,et al.  Internet intrusions: global characteristics and prevalence , 2003, SIGMETRICS '03.

[49]  Wei Hong,et al.  The design of an acquisitional query processor for sensor networks , 2003, SIGMOD '03.

[50]  Deborah Estrin,et al.  DIFS: a distributed index for features in sensor networks , 2003, Ad Hoc Networks.

[51]  Martin Vetterli,et al.  Power efficient gathering of correlated data: optimization, NP-completeness and heuristics , 2003, MOCO.

[52]  Jørgen Lindskov Knudsen,et al.  Compiling java for low-end embedded systems , 2003, LCTES '03.

[53]  Johann Blieberger,et al.  Eliminating Redundant Range Checks in GNAT Using Symbolic Evaluation , 2003, Ada-Europe.

[54]  David E. Culler,et al.  The nesC language: A holistic approach to networked embedded systems , 2003, PLDI.

[55]  Deborah Estrin,et al.  Simultaneous Optimization for Concave Costs: Single Sink Aggregation or Single Source Buy-at-Bulk , 2003, SODA '03.

[56]  Lukasz Golab,et al.  Issues in data stream management , 2003, SGMD.

[57]  Feng Zhao,et al.  TinyGALS: a programming model for event-driven embedded systems , 2003, SAC '03.

[58]  Chee-Yee Chong,et al.  Sensor networks: evolution, opportunities, and challenges , 2003, Proc. IEEE.

[59]  Marc Feeley,et al.  Generation of fast interpreters for Huffman compressed bytecode , 2003, IVME '03.

[60]  Deborah Estrin,et al.  Directed diffusion for wireless sensor networking , 2003, TNET.

[61]  Jens Palsberg,et al.  Compiling with code-size constraints , 2004, TECS.

[62]  Srinivasan Seshan,et al.  Synopsis diffusion for robust aggregation in sensor networks , 2004, SenSys '04.

[63]  Wei Hong,et al.  Model-Driven Data Acquisition in Sensor Networks , 2004, VLDB.

[64]  Ramesh Govindan,et al.  Scale Free Aggregation in Sensor Networks , 2004, ALGOSENSORS.

[65]  Pedro José Marrón,et al.  Generic role assignment for wireless sensor networks , 2004, EW 11.

[66]  Leonidas J. Guibas,et al.  Wireless sensor networks - an information processing approach , 2004, The Morgan Kaufmann series in networking.

[67]  Robert Nowak,et al.  Distributed optimization in sensor networks , 2004, Third International Symposium on Information Processing in Sensor Networks, 2004. IPSN 2004.

[68]  Rajeev Motwani,et al.  The price of validity in dynamic networks , 2004, SIGMOD '04.

[69]  Jie Gao,et al.  Fractionally cascaded information in a sensor network , 2004, Third International Symposium on Information Processing in Sensor Networks, 2004. IPSN 2004.

[70]  Roger Wattenhofer,et al.  Gathering correlated data in sensor networks , 2004, DIALM-POMC '04.

[71]  Baltasar Beferull-Lozano,et al.  On network correlated data gathering , 2004, IEEE INFOCOM 2004.

[72]  Michael Franz,et al.  A Tree-Based Alternative to Java Byte-Codes , 1999, International Journal of Parallel Programming.

[73]  Darko Kirovski,et al.  Procedure Based Program Compression , 2004, International Journal of Parallel Programming.

[74]  Koen De Bosschere,et al.  Link-time optimization of ARM binaries , 2004, LCTES '04.

[75]  Johannes Gehrke,et al.  Query Processing in Sensor Networks , 2003, CIDR.

[76]  Jeffrey Considine,et al.  Approximate aggregation techniques for sensor databases , 2004, Proceedings. 20th International Conference on Data Engineering.

[77]  Peter Desnoyers,et al.  TSAR: a two tier sensor storage architecture using interval skip graphs , 2005, SenSys '05.

[78]  Rajmohan Rajaraman,et al.  Multi-query Optimization for Sensor Networks , 2005, DCOSS.

[79]  Jörg Sander,et al.  Exploiting redundancy in sensor networks for energy efficient processing of spatiotemporal region queries , 2005, CIKM '05.

[80]  Wei Hong,et al.  TinyDB: an acquisitional query processing system for sensor networks , 2005, TODS.

[81]  Daniel J. Abadi,et al.  REED: Robust, Efficient Filtering and Event Detection in Sensor Networks , 2005, VLDB.

[82]  Cyrus Shahabi,et al.  Exploiting spatial correlation towards an energy efficient clustered aggregation technique (CAG) [wireless sensor network applications] , 2005, IEEE International Conference on Communications, 2005. ICC 2005. 2005.

[83]  Jie Liu,et al.  galsC: a language for event-driven embedded systems , 2005, Design, Automation and Test in Europe.

[84]  Vishnu Navda,et al.  Efficient gathering of correlated data in sensor networks , 2008, TOSN.

[85]  Mukesh Singhal,et al.  Security in wireless sensor networks , 2008, Wirel. Commun. Mob. Comput..

[86]  Ramesh Govindan,et al.  The impact of spatial correlation on routing with compression in wireless sensor networks , 2008, TOSN.