Micromechanics of composite materials using multivariable finite element method and homogenization theory
暂无分享,去创建一个
Nong Zhang | C. C. Wu | Shenglin Di | Huiyu Sun | Nong Zhang | Huiyu Sun | S. Di | Changchun Wu
[1] T. Pian,et al. Rational approach for assumed stress finite elements , 1984 .
[2] Dominique Leguillon,et al. Homogenized constitutive law for a partially cohesive composite material , 1982 .
[3] F. Léné,et al. Damage constitutive relations for composite materials , 1986 .
[4] T. Pian. Derivation of element stiffness matrices by assumed stress distributions , 1964 .
[5] Y. H. Zhao,et al. Effective Elastic Moduli of Ribbon-Reinforced Composites , 1990 .
[6] R. Moore,et al. Composite properties for S-2 glass in a room-temperature-curable epoxy matrix , 1979 .
[7] J. N. Reddy,et al. Analysis of laminated composite plates using a higher‐order shear deformation theory , 1985 .
[8] Jonathan A. Lee,et al. Metal and Polymer Matrix Composites , 1987 .
[9] S. Jansson,et al. Homogenized nonlinear constitutive properties and local stress concentrations for composites with periodic internal structure , 1992 .
[10] Z. Hashin. Analysis of Composite Materials—A Survey , 1983 .
[11] C Wu,et al. OPTIMIZATION DESIGN OF HYBRID ELEMENTS , 1987 .
[12] T. Pian,et al. CONSISTENCY CONDITION AND CONVERGENCE CRITERIA OF INCOMPATIBLE ELEMENTS: GENERAL FORMULATION OF INCOMPATIBLE FUNCTIONS AND ITS APPLICATION , 1987 .