Dispersive estimates for Schrödinger operators in the presence of a resonance and/or an eigenvalue at zero energy in dimension three: II
暂无分享,去创建一个
[1] Arne Jensen,et al. Spectral properties of Schrödinger operators and time-decay of the wave functions , 1979 .
[2] Dmitry E. Pelinovsky,et al. Bifurcations from the endpoints of the essential spectrum in the linearized nonlinear Schrödinger problem , 2005 .
[3] A. Soffer,et al. Decay estimates for Schrödinger operators , 1991 .
[4] Dispersive Estimates for Schrödinger Operators in Dimensions One and Three , 2003, math/0306108.
[5] Walter A. Strauss,et al. Nonlinear Wave Equations , 1990 .
[6] Dmitry E. Pelinovsky,et al. Purely nonlinear instability of standing waves with minimal energy , 2003 .
[7] J. Shatah,et al. Stability theory of solitary waves in the presence of symmetry, II☆ , 1990 .
[8] J. Shatah. Stable standing waves of nonlinear Klein-Gordon equations , 1983 .
[9] J. Shatah,et al. Instability of nonlinear bound states , 1985 .
[10] Walter A. Strauss,et al. Existence of solitary waves in higher dimensions , 1977 .
[11] M. Grillakis,et al. Analysis of the linearization around a critical point of an infinite dimensional Hamiltonian system , 1990 .
[12] M. Kwong. Uniqueness of positive solutions of Δu−u+up=0 in Rn , 1989 .
[13] Mark S. C. Reed,et al. Method of Modern Mathematical Physics , 1972 .
[14] P. Couturier. Japan , 1988, The Lancet.
[15] A. Jensen,et al. A unified approach to resolvent expansions at thresholds , 2001 .
[16] S. Cuccagna. Stabilization of solutions to nonlinear Schrödinger equations , 2001 .
[17] The $W^{k,p}$-continuity of wave operators for Schrödinger operators , 1995 .
[18] A. Soffer,et al. Multichannel nonlinear scattering for nonintegrable equations II. The case of anisotropic potentials and data , 1992 .
[19] M. Weinstein. Lyapunov stability of ground states of nonlinear dispersive evolution equations , 1986 .
[20] F. Gesztesy,et al. A Spectral Mapping Theorem and Invariant Manifolds for Nonlinear Schr , 1999, solv-int/9907017.
[21] Dmitry E. Pelinovsky,et al. Spectra of positive and negative energies in the linearized NLS problem , 2005 .
[22] Israel Michael Sigal,et al. Introduction to Spectral Theory , 1996 .
[23] P. Lions,et al. Orbital stability of standing waves for some nonlinear Schrödinger equations , 1982 .
[24] C. Sulem,et al. The nonlinear Schrödinger equation : self-focusing and wave collapse , 2004 .
[25] Israel Michael Sigal,et al. Introduction to Spectral Theory: With Applications to Schrödinger Operators , 1995 .
[26] W. Schlag,et al. Time decay for solutions of Schrödinger equations with rough and time-dependent potentials , 2001, math/0110098.
[27] E. Stein. Singular Integrals and Di?erentiability Properties of Functions , 1971 .
[28] K. Yajima. Dispersive Estimates for Schrödinger Equations with Threshold Resonance and Eigenvalue , 2005 .
[29] Wilhelm Schlag. Stable manifolds for an orbitally unstable NLS , 2004 .
[30] Pierre-Louis Lions,et al. Nonlinear scalar field equations, I existence of a ground state , 1983 .
[31] James Serrin,et al. Uniqueness of positive radial solutions of Δu+f(u)=0 in ℝn , 1987 .
[32] J. Rauch. Local decay of scattering solutions to Schrödinger's equation , 1978 .
[33] K. Yajima. The $W^{k,p}$-continuity of wave operators for Schrödinger operators , 1995 .
[34] W. Schlag,et al. The nonlinear Schrödinger equation , 2008 .
[35] G. Perelman. Asymptotic Stability of Multi-soliton Solutions for Nonlinear Schrödinger Equations , 2003 .
[36] G. Perelman. On the Formation of Singularities in Solutions of the Critical Nonlinear Schrödinger Equation , 2001 .
[37] M. Grillakis,et al. Linearized instability for nonlinear Schr?odinger and Klein-Gordon equations , 1988 .
[38] PRINCETON UNIVERSITY PRESS , 2005 .
[39] Dispersive bounds for the three-dimensional Schrödinger equation with almost critical potentials , 2004, math/0409327.
[40] Michael I. Weinstein,et al. Modulational Stability of Ground States of Nonlinear Schrödinger Equations , 1985 .
[41] Vladimir S. Buslaev,et al. On the stability of solitary waves for nonlinear Schr?odinger equations , 1995 .
[42] I. Rodnianski,et al. Dispersive analysis of charge transfer models , 2003, math/0309112.
[43] Wilhelm Schlag,et al. Dispersive estimates for Schrödinger operators in the presence of a resonance and/or an eigenvalue at zero energy in dimension three: I , 2004 .
[44] H.-G. Schöpf. V. I. Arnold and A. Avez, Ergodic Problems of Classical Mechanics. (The Mathematical Physics Monograph Series) IX + 286 S. m. Fig. New York/Amsterdam 1968. W. A. Benjamin, Inc. Preis geb. $ 14.75, brosch. $ 6.95 . , 1970 .
[45] V. I. Arnolʹd,et al. Ergodic problems of classical mechanics , 1968 .
[46] C. V. Coffman. Uniqueness of the ground state solution for Δu−u+u3=0 and a variational characterization of other solutions , 1972 .
[47] Michael I. Weinstein,et al. Multichannel nonlinear scattering for nonintegrable equations , 1990 .
[48] M. Murata. Asymptotic expansions in time for solutions of Schrödinger-type equations , 1982 .
[49] Pierre-Louis Lions,et al. Nonlinear scalar field equations, II existence of infinitely many solutions , 1983 .
[50] Shmuel Agmon,et al. Spectral properties of Schrödinger operators and scattering theory , 1975 .