Temporal tuning characteristics of the perceptual template and endogenous cuing of spatial attention

External noise presented in temporal contiguity with a target impairs perceptual performance, reflecting the temporal tuning of the perceptual template. Deriving the temporal characteristics of the perceptual template, however, requires an observer model that segregates the impact of non-linearities and intrinsic inefficiencies of the observer in order to account for the impact of external noise in various temporal configurations. In Experiment 1, we showed that the perceptual template model successfully accounts for temporal masking functions in foveal Gabor orientation identification masked by external noise with a wide range of temporal configurations, and estimates the temporal characteristics of the perceptual template. In Experiment 2, we extended the paradigm and the model to compare the temporal tuning characteristics of the perceptual template in central pre- and simultaneous cuing of endogenous spatial attention in a Gabor orientation identification task in visual periphery. We found that endogenous spatial attention excludes external noise by both sharpening the temporal window of the perceptual template and (mostly) reducing the impact of external noise uniformly across the entire temporal window.

[1]  B. Bergum,et al.  Attention and performance IX , 1982 .

[2]  J. Maunsell,et al.  State dependent activity in monkey visual cortex , 2004, Experimental Brain Research.

[3]  R. F. Hess,et al.  Temporal properties of human visual filters: number, shapes and spatial covariation , 1992, Vision Research.

[4]  H. Spitzer,et al.  Increased attention enhances both behavioral and neuronal performance. , 1988, Science.

[5]  P. L. Smith,et al.  Attention and luminance detection: effects of cues, masks, and pedestals. , 2000, Journal of experimental psychology. Human perception and performance.

[6]  J. Enns,et al.  Object Substitution: A New Form of Masking in Unattended Visual Locations , 1997 .

[7]  B. Julesz,et al.  Spatial-frequency masking in vision: critical bands and spread of masking. , 1972, Journal of the Optical Society of America.

[8]  Avishai Henik,et al.  Extrageniculate Contributions to Reflex Visual Orienting in Normal Humans: A Temporal Hemifield Advantage , 1991, Journal of Cognitive Neuroscience.

[9]  R. Desimone,et al.  Competitive Mechanisms Subserve Attention in Macaque Areas V2 and V4 , 1999, The Journal of Neuroscience.

[10]  D H Brainard,et al.  The Psychophysics Toolbox. , 1997, Spatial vision.

[11]  Leslie G. Ungerleider,et al.  Mechanisms of directed attention in the human extrastriate cortex as revealed by functional MRI. , 1998, Science.

[12]  Miguel P Eckstein,et al.  The footprints of visual attention in the Posner cueing paradigm revealed by classification images. , 2002, Journal of vision.

[13]  P. Calabresi,et al.  Saccade preparation inhibits reorienting to recently attended locations. , 1989, Journal of experimental psychology. Human perception and performance.

[14]  B. Breitmeyer,et al.  Recent models and findings in visual backward masking: A comparison, review, and update , 2000, Perception & psychophysics.

[15]  Denis G. Pelli,et al.  The visual filter mediating letter identification , 1994, Nature.

[16]  B. Dosher,et al.  Mechanisms of perceptual learning , 1999, Vision Research.

[17]  R. Patterson Auditory filter shapes derived with noise stimuli. , 1976, The Journal of the Acoustical Society of America.

[18]  A J Ahumada,et al.  Equivalent-noise model for contrast detection and discrimination. , 1985, Journal of the Optical Society of America. A, Optics and image science.

[19]  Ian H. Robertson,et al.  Unilateral Neglect: Clinical and Experimental Studies edited by Ian H. Robertson and John C. Marshall , 1994 .

[20]  D. Burr,et al.  Spatial and temporal selectivity of the human motion detection system , 1985, Vision Research.

[21]  Denis G. Pelli,et al.  Accurate control of contrast on microcomputer displays , 1991, Vision Research.

[22]  J. P. Thomas,et al.  A signal detection model predicts the effects of set size on visual search accuracy for feature, conjunction, triple conjunction, and disjunction displays , 2000, Perception & psychophysics.

[23]  F. Campbell,et al.  Orientational selectivity of the human visual system , 1966, The Journal of physiology.

[24]  B. Dosher,et al.  External noise distinguishes attention mechanisms , 1998, Vision Research.

[25]  P. A. Kolers Intensity and contour effects in visual masking , 1962 .

[26]  D G Pelli,et al.  Uncertainty explains many aspects of visual contrast detection and discrimination. , 1985, Journal of the Optical Society of America. A, Optics and image science.

[27]  Zhong-Lin Lu,et al.  Generating high gray-level resolution monochrome displays with conventional computer graphics cards and color monitors , 2003, Journal of Neuroscience Methods.

[28]  F A Wichmann,et al.  Ning for Helpful Comments and Suggestions. This Paper Benefited Con- Siderably from Conscientious Peer Review, and We Thank Our Reviewers the Psychometric Function: I. Fitting, Sampling, and Goodness of Fit , 2001 .

[29]  M. Posner,et al.  Components of visual orienting , 1984 .

[30]  Vision Research , 1961, Nature.

[31]  M. Carrasco,et al.  Covert attention affects the psychometric function of contrast sensitivity , 2002, Vision Research.

[32]  L. Kaufman,et al.  Handbook of perception and human performance , 1986 .

[33]  Mechanisms Lu,et al.  External Noise Distinguishes Attention , 1998 .

[34]  A E Burgess,et al.  Visual signal detection. IV. Observer inconsistency. , 1988, Journal of the Optical Society of America. A, Optics and image science.

[35]  A. Gorea,et al.  New look at Bloch's law for contrast. , 1986, Journal of the Optical Society of America. A, Optics and image science.

[36]  Bruno G. Breitmeyer,et al.  Visual masking : an integrative approach , 1984 .

[37]  Marisa Carrasco,et al.  Covert attention enhances letter identification without affecting channel tuning. , 2004, Journal of vision.

[38]  K. Nakayama,et al.  Sustained and transient components of focal visual attention , 1989, Vision Research.

[39]  R. Klein,et al.  Is Posner's "beam" the same as Treisman's "glue"?: On the relation between visual orienting and feature integration theory. , 1987, Journal of experimental psychology. Human perception and performance.

[40]  R. Desimone,et al.  Selective attention gates visual processing in the extrastriate cortex. , 1985, Science.

[41]  M. Carrasco,et al.  Spatial covert attention increases contrast sensitivity across the CSF: support for signal enhancement , 2000, Vision Research.

[42]  G. Henning,et al.  Effects of different hypothetical detection mechanisms on the shape of spatial-frequency filters inferred from masking experiments: I. Noise masks. , 1981, Journal of the Optical Society of America.

[43]  M. Cheal,et al.  Central and Peripheral Precuing of Forced-Choice Discrimination , 1991, The Quarterly journal of experimental psychology. A, Human experimental psychology.

[44]  J. Robson Spatial and Temporal Contrast-Sensitivity Functions of the Visual System , 1966 .

[45]  J. Henderson,et al.  Stimulus discrimination following covert attentional orienting to an exogenous cue. , 1991, Journal of experimental psychology. Human perception and performance.

[46]  Gregory Francis,et al.  Developing a new quantitative account of backward masking , 2003, Cognitive Psychology.

[47]  J B Hellige,et al.  Figural relationship effects and mechanisms of visual masking. , 1979, Journal of experimental psychology. Human perception and performance.

[48]  John H. R. Maunsell,et al.  Attentional modulation of visual motion processing in cortical areas MT and MST , 1996, Nature.

[49]  N. Nagaraja,et al.  Effect of Luminance Noise on Contrast Thresholds , 1964 .

[50]  B. Dosher,et al.  PSYCHOLOGICAL SCIENCE Research Article NOISE EXCLUSION IN SPATIAL ATTENTION , 2022 .

[51]  J. Enns,et al.  What’s new in visual masking? , 2000, Trends in Cognitive Sciences.

[52]  Luis A. Lesmes,et al.  Spatial attention excludes external noise at the target location. , 2002, Journal of vision.

[53]  S. R. Lehky,et al.  Temporal properties of visual channels measured by masking. , 1985, Journal of the Optical Society of America. A, Optics and image science.

[54]  H. Pashler,et al.  Negligible Effect of Spatial Precuing on Identification of Single Digits , 1994 .

[55]  E Scheerer,et al.  Integration, interruption and processing rate in visual backward masking , 1973, Psychologische Forschung.

[56]  H L DE DZN Relationship between critical flicker-frequency and a set of low-frequency characteristics of the eye. , 1954, Journal of the Optical Society of America.

[57]  J. Koenderink,et al.  Dual percept of movement and spatial periodicity in stroboscopically illuminated moving noise patterns. , 1980, Journal of the Optical Society of America.

[58]  H. J. Muller,et al.  Reflexive and voluntary orienting of visual attention: time course of activation and resistance to interruption. , 1989, Journal of experimental psychology. Human perception and performance.

[59]  T. Spencer,et al.  Evidence for an interruption theory of backward masking. , 1970, Journal of experimental psychology.

[60]  D.,et al.  Visual Responses to Time-Dependent Stimuli . * I . Amplitude Sensitivity , 2004 .

[61]  D. Kahneman Method, findings, and theory in studies of visual masking. , 1968, Psychological bulletin.

[62]  G. Legge Sustained and transient mechanisms in human vision: Temporal and spatial properties , 1978, Vision Research.

[63]  J. Jonides Voluntary versus automatic control over the mind's eye's movement , 1981 .

[64]  J. M. Foley,et al.  Contrast masking in human vision. , 1980, Journal of the Optical Society of America.

[65]  D. Tolhurst,et al.  Psychophysical evidence for sustained and transient detectors in human vision , 1973, The Journal of physiology.

[66]  R. Desimone,et al.  Neural mechanisms of selective visual attention. , 1995, Annual review of neuroscience.

[67]  M. Erdelyi A new look at the new look: perceptual defense and vigilance. , 1974, Psychological review.

[68]  T Kippenberger,et al.  Measuring the effect , 1999 .

[69]  H. D. L. Dzn Relationship between Critical Flicker-Frequency and a Set of Low-Frequency Characteristics of the Eye , 1954 .

[70]  G. Mangun,et al.  1 - Electrophysiological Studies of Reflexive Attention , 2001 .

[71]  P. H. Schiller,et al.  State dependent activity in monkey visual cortex , 2004, Experimental Brain Research.

[72]  R. Desimone,et al.  Neural mechanisms of spatial selective attention in areas V1, V2, and V4 of macaque visual cortex. , 1997, Journal of neurophysiology.

[73]  J. Daugman Spatial visual channels in the fourier plane , 1984, Vision Research.

[74]  O. Mimura [Eye movements]. , 1992, Nippon Ganka Gakkai zasshi.

[75]  H. Wilson,et al.  Spatial frequency tuning of orientation selective units estimated by oblique masking , 1983, Vision Research.

[76]  Journal of the Optical Society of America , 1950, Nature.

[77]  B. Gibson,et al.  Attraction, Distraction and Action: Multiple Perspectives on Attentional Capture. Advances in Psychology , 2001 .

[78]  J. Palmer,et al.  Measuring the effect of attention on simple visual search. , 1993, Journal of experimental psychology. Human perception and performance.

[79]  H. Wilson,et al.  Orientation bandwidths of spatial mechanisms measured by masking. , 1984, Journal of the Optical Society of America. A, Optics and image science.

[80]  Andrew B. Watson,et al.  Window of visibility: a psychophysical theory of fidelity in time-sampled visual motion displays , 1986 .

[81]  M P Eckstein,et al.  Visual signal detection in structured backgrounds. II. Effects of contrast gain control, background variations, and white noise. , 1997, Journal of the Optical Society of America. A, Optics, image science, and vision.

[82]  B. Dosher,et al.  Characterizing human perceptual inefficiencies with equivalent internal noise. , 1999, Journal of the Optical Society of America. A, Optics, image science, and vision.

[83]  R. F. Wagner,et al.  Efficiency of human visual signal discrimination. , 1981, Science.

[84]  D G Pelli,et al.  The VideoToolbox software for visual psychophysics: transforming numbers into movies. , 1997, Spatial vision.

[85]  Z L Lu,et al.  Characterizing the spatial-frequency sensitivity of perceptual templates. , 2001, Journal of the Optical Society of America. A, Optics, image science, and vision.

[86]  S. Yantis,et al.  Uniqueness of abrupt visual onset in capturing attention , 1988, Perception & psychophysics.

[87]  D. H. Kelly Visual responses to time-dependent stimuli. III. Individual variations. , 1962, Journal of the Optical Society of America.

[88]  H. Wilson Spatiotemporal characterization of a transient mechanism in the human visual system , 1980, Vision Research.

[89]  D. Bouwhuis,et al.  Attention and performance X : control of language processes , 1986 .

[90]  Mark A. Georgeson,et al.  Temporal properties of spatial contrast vision , 1987, Vision Research.

[91]  P. Rabbitt,et al.  Reflexive and voluntary orienting of visual attention: time course of activation and resistance to interruption , 1989 .

[92]  Z-L Lu,et al.  External Noise Methods and Observer Models , 2002 .

[93]  B. Dosher,et al.  Spatial attention: different mechanisms for central and peripheral temporal precues? , 2000, Journal of experimental psychology. Human perception and performance.

[94]  C. Blakemore,et al.  Orientation Selectivity of the Human Visual System as a Function of Retinal Eccentricity and Visual Hemifield , 1981, Perception.

[95]  M. Posner,et al.  Orienting of Attention* , 1980, The Quarterly journal of experimental psychology.

[96]  M. Turvey On peripheral and central processes in vision: inferences from an information-processing analysis of masking with patterned stimuli. , 1973, Psychological review.