Steady-state simulation of reflected Brownian motion and related stochastic networks

This paper develops the first class of algorithms that enable unbiased estimation of steady-state expectations for multidimensional reflected Brownian motion. In order to explain our ideas, we first consider the case of compound Poisson (possibly Markov modulated) input. In this case, we analyze the complexity of our procedure as the dimension of the network increases and show that, under certain assumptions, the algorithm has polynomial-expected termination time. Our methodology includes procedures that are of interest beyond steady-state simulation and reflected processes. For instance, we use wavelets to construct a piecewise linear function that can be guaranteed to be within $\varepsilon$ distance (deterministic) in the uniform norm to Brownian motion in any compact time interval.

[1]  D. Burkholder Exit times of Brownian motion, harmonic majorization, and Hardy spaces☆ , 1977 .

[2]  J. Harrison,et al.  Reflected Brownian Motion on an Orthant , 1981 .

[3]  Ruth J. Williams Brownian motion in a wedge with oblique reflection at the boundary , 1985 .

[4]  Martin I. Reiman,et al.  Open Queueing Networks in Heavy Traffic , 1984, Math. Oper. Res..

[5]  A. Gut Stopped Random Walks: Limit Theorems and Applications , 1987 .

[6]  R. DeBlassie,et al.  Exit times from cones in ℝn of Brownian motion , 1987 .

[7]  Ruth J. Williams,et al.  Brownian Models of Open Queueing Networks with Homogeneous Customer Populations , 1987 .

[8]  S. Asmussen,et al.  Applied Probability and Queues , 1989 .

[9]  J. Harrison,et al.  Reflected Brownian Motion in an Orthant: Numerical Methods for Steady-State Analysis , 1992 .

[10]  Peter W. Glynn,et al.  Discretization Error in Simulation of One-Dimensional Reflecting Brownian Motion , 1995 .

[11]  O. Kella Stability and nonproduct form of stochastic fluid networks with Lévy inputs , 1996 .

[12]  J. Propp,et al.  Exact sampling with coupled Markov chains and applications to statistical mechanics , 1996 .

[13]  W. Whitt,et al.  Stability and structural properties of stochastic storage networks , 1996, Journal of Applied Probability.

[14]  Kavita Ramanan,et al.  A Multiclass Feedback Queueing Network with a Regular Skorokhod Problem , 2000, Queueing Syst. Theory Appl..

[15]  S. Ramasubramanian,et al.  A Subsidy-Surplus Model and the Skorokhod Problem in an Orthant , 2000, Math. Oper. Res..

[16]  P. Glynn,et al.  Simulating the maximum of a random walk , 2000 .

[17]  David D. Yao,et al.  Fundamentals of Queueing Networks , 2001 .

[18]  W. Kendall Geometric ergodicity and perfect simulation , 2004, math/0410012.

[19]  Discrete approximations to reflected Brownian motion , 2006, math/0611114.

[20]  D. Gamarnik,et al.  Validity of heavy traffic steady-state approximations in generalized Jackson networks , 2004, math/0410066.

[21]  Krzysztof Debicki,et al.  Quasi-Product Forms for Lévy-Driven Fluid Networks , 2007, Math. Oper. Res..

[22]  Peter W. Glynn,et al.  Stochastic Simulation: Algorithms and Analysis , 2007 .

[23]  P. Dupuis,et al.  SDEs with Oblique Reflection on Nonsmooth Domains , 2008 .

[24]  Luc Devroye,et al.  On exact simulation algorithms for some distributions related to Jacobi theta functions , 2009 .

[25]  Ruth J. Williams,et al.  Diffusion approximation for a heavily loaded multi-user wireless communication system with cooperation , 2009, Queueing Syst. Theory Appl..

[26]  Amarjit Budhiraja,et al.  Stationary Distribution Convergence for Generalized Jackson Networks in Heavy Traffic , 2009, Math. Oper. Res..

[27]  A. B. Dieker,et al.  Nonnegativity of solutions to the basic adjoint relationship for some diffusion processes , 2011, Queueing Syst. Theory Appl..

[28]  Alexandros Beskos,et al.  ε-Strong simulation of the Brownian path , 2011, 1110.0110.

[29]  R. Song,et al.  Exit Times of Brownian Motion, Harmonic Majorization, and Hardy Spaces , 2011 .

[30]  J. Blanchet,et al.  On exact sampling of stochastic perpetuities , 2011, Journal of Applied Probability.

[31]  Offer Kella,et al.  Asymptotic Irrelevance of Initial Conditions for Skorohod Reflection Mapping on the Nonnegative Orthant , 2011, Math. Oper. Res..