Quantum Communication with Time-Bin Encoded Microwave Photons

Heralding techniques are useful in quantum communication to circumvent losses without resorting to error correction schemes or quantum repeaters. Such techniques are realized, for example, by monitoring for photon loss at the receiving end of the quantum link while not disturbing the transmitted quantum state. We describe and experimentally benchmark a scheme that incorporates error detection in a quantum channel connecting two transmon qubits using traveling microwave photons. This is achieved by encoding the quantum information as a time-bin superposition of a single photon, which simultaneously realizes high communication rates and high fidelities. The presented scheme is straightforward to implement in circuit QED and is fully microwave-controlled, making it an interesting candidate for future modular quantum computing architectures.

[1]  Liang Jiang,et al.  Efficient long distance quantum communication , 2015, 1509.08435.

[2]  A. Wallraff,et al.  Characterizing the attenuation of coaxial and rectangular microwave-frequency waveguides at cryogenic temperatures , 2016, EPJ Quantum Technology.

[3]  A. Blais,et al.  Fast and Unconditional All-Microwave Reset of a Superconducting Qubit. , 2018, Physical review letters.

[4]  M. Steffen,et al.  Measurement of the Entanglement of Two Superconducting Qubits via State Tomography , 2006, Science.

[5]  D. Matsukevich,et al.  Entanglement of single-atom quantum bits at a distance , 2007, Nature.

[6]  Norbert Lütkenhaus,et al.  Optimal architectures for long distance quantum communication , 2015, Scientific Reports.

[7]  John A Smolin,et al.  Efficient method for computing the maximum-likelihood quantum state from measurements with additive Gaussian noise. , 2012, Physical review letters.

[8]  W. Marsden I and J , 2012 .

[9]  Jay M. Gambetta,et al.  Time-reversal symmetrization of spontaneous emission for quantum state transfer , 2013, 1308.3471.

[10]  Joseph M. Lukens,et al.  Frequency-encoded photonic qubits for scalable quantum information processing , 2016, 1612.03131.

[11]  John M. Martinis,et al.  Catching Time-Reversed Microwave Coherent State Photons with 99.4% Absorption Efficiency , 2013, 1311.1180.

[12]  H. Weinfurter,et al.  Heralded Entanglement Between Widely Separated Atoms , 2012, Science.

[13]  A. Furusawa,et al.  Teleportation of continuous quantum variables , 1998, Technical Digest. Summaries of Papers Presented at the International Quantum Electronics Conference. Conference Edition. 1998 Technical Digest Series, Vol.7 (IEEE Cat. No.98CH36236).

[14]  S. Girvin,et al.  Charge-insensitive qubit design derived from the Cooper pair box , 2007, cond-mat/0703002.

[15]  J M Gambetta,et al.  Simple pulses for elimination of leakage in weakly nonlinear qubits. , 2009, Physical review letters.

[16]  G. Rempe,et al.  An elementary quantum network of single atoms in optical cavities , 2012, Nature.

[17]  Erik Lucero,et al.  Catch and release of microwave photon states. , 2012, Physical review letters.

[18]  Nicolas Gisin,et al.  Heralded quantum entanglement between two crystals , 2011, Nature Photonics.

[19]  E. Zalys-Geller,et al.  Robust concurrent remote entanglement between two superconducting qubits , 2016, 1603.03742.

[20]  D. Schuster,et al.  Deterministic Bidirectional Communication and Remote Entanglement Generation Between Superconducting Quantum Processors , 2018, 1804.02028.

[21]  Herbert Walther,et al.  Continuous generation of single photons with controlled waveform in an ion-trap cavity system , 2004, Nature.

[22]  K. B. Whaley,et al.  Supplementary Information for " Observation of measurement-induced entanglement and quantum trajectories of remote superconducting qubits " , 2014 .

[23]  Weinfurter,et al.  Dense coding in experimental quantum communication. , 1996, Physical review letters.

[24]  M. Goggin,et al.  Remote state preparation: arbitrary remote control of photon polarization. , 2005, Physical review letters.

[25]  S. Berger,et al.  Microwave-Controlled Generation of Shaped Single Photons in Circuit Quantum Electrodynamics , 2013, 1308.4094.

[26]  P Reinhold,et al.  Deterministic Remote Entanglement of Superconducting Circuits through Microwave Two-Photon Transitions. , 2017, Physical review letters.

[27]  A. Wallraff,et al.  Quantum-limited amplification and entanglement in coupled nonlinear resonators. , 2014, Physical review letters.

[28]  Yao Lu,et al.  Deterministic bidirectional communication and remote entanglement generation between superconducting qubits , 2019, npj Quantum Information.

[29]  S. Wehner,et al.  Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres , 2015, Nature.

[30]  Alexandre Blais,et al.  Superconducting qubit with Purcell protection and tunable coupling. , 2010, Physical review letters.

[31]  G. Agrawal Fiber‐Optic Communication Systems , 2021 .

[32]  N. Lutkenhaus,et al.  Experimental procedures for entanglement verification , 2007 .

[33]  Daniel J. Egger,et al.  Pulsed Reset Protocol for Fixed-Frequency Superconducting Qubits , 2018, Physical Review Applied.

[34]  J. Cirac,et al.  Quantum State Transfer and Entanglement Distribution among Distant Nodes in a Quantum Network , 1996, quant-ph/9611017.

[35]  R. Blatt,et al.  Quantum information transfer using photons , 2014, Nature Photonics.

[36]  Liang Jiang,et al.  On-demand quantum state transfer and entanglement between remote microwave cavity memories , 2017, 1712.05832.

[37]  L. DiCarlo,et al.  Chip-to-chip entanglement of transmon qubits using engineered measurement fields , 2017, 1712.06141.

[38]  Ida-Maria Svensson,et al.  Storage and on-demand release of microwaves using superconducting resonators with tunable coupling , 2014, 1406.2005.

[39]  H. Kimble,et al.  Measurement induced entanglement for excitation stored in remote atomic ensembles , 2006, QELS 2006.

[40]  Shor,et al.  Scheme for reducing decoherence in quantum computer memory. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[41]  H. J. Kimble,et al.  The quantum internet , 2008, Nature.

[42]  Jonathan P. Dowling,et al.  Creation of large-photon-number path entanglement conditioned on photodetection , 2001, quant-ph/0112002.

[43]  Jacob M. Taylor,et al.  Distributed Quantum Computation Based-on Small Quantum Registers , 2007, 0709.4539.

[44]  P. Macha,et al.  Realization of a binary-outcome projection measurement of a three-level superconducting quantum system , 2015, 1510.08214.

[45]  Jeremy L O'Brien,et al.  Heralding two-photon and four-photon path entanglement on a chip. , 2010, Physical review letters.

[46]  M. Padgett,et al.  Orbital angular momentum: origins, behavior and applications , 2011 .

[47]  S. Gasparinetti,et al.  Deterministic quantum state transfer and remote entanglement using microwave photons , 2017, Nature.

[48]  Yuanying Chen,et al.  Rapid evolution of piRNA clusters in the Drosophila melanogaster ovary , 2023, bioRxiv.

[49]  W Tittel,et al.  Distribution of time-bin entangled qubits over 50 km of optical fiber. , 2004, Physical review letters.

[50]  L. Tornberg,et al.  Reversing Quantum Trajectories with Analog Feedback , 2013, 1311.5472.

[51]  Peter C. Humphreys,et al.  Deterministic delivery of remote entanglement on a quantum network , 2017, Nature.

[52]  Ciarán M Lee,et al.  Towards Device-Independent Information Processing on General Quantum Networks. , 2017, Physical review letters.

[53]  N. Gisin,et al.  Pulsed Energy-Time Entangled Twin-Photon Source for Quantum Communication , 1999 .

[54]  Andreas Wallraff,et al.  Deterministic Quantum State Transfer and Generation of Remote Entanglement using Microwave Photons , 2018 .

[55]  Axel Kuhn,et al.  Deterministic single-photon source for distributed quantum networking. , 2002, Physical review letters.

[56]  Y. Salathe,et al.  Rapid High-Fidelity Single-Shot Dispersive Readout of Superconducting Qubits , 2017, 1701.06933.

[57]  S. Berger,et al.  Microwave-Induced Amplitude and Phase Tunable Qubit-Resonator Coupling in Circuit Quantum Electrodynamics , 2015, 1502.03692.

[58]  B. Brecht,et al.  Photon temporal modes: a complete framework for quantum information science , 2015, 1504.06251.

[59]  Xiaosong Ma,et al.  Quantum teleportation over 143 kilometres using active feed-forward , 2012, Nature.

[60]  M. Markham,et al.  Heralded entanglement between solid-state qubits separated by three metres , 2012, Nature.

[61]  D Hayes,et al.  Heralded quantum gate between remote quantum memories. , 2009, Physical review letters.

[62]  Seth Lloyd,et al.  ANALOG QUANTUM ERROR CORRECTION , 1998 .

[63]  Wolfgang Dür,et al.  Quantum Repeaters: The Role of Imperfect Local Operations in Quantum Communication , 1998 .

[64]  Dong He,et al.  Satellite-based entanglement distribution over 1200 kilometers , 2017, Science.