The Methods of Distances in the Theory of Probability and Statistics
暂无分享,去创建一个
Main directions in the theory of probability metrics.- Probability distances and probability metrics: Definitions.- Primary, simple and compound probability distances, and minimal and maximal distances and norms.- A structural classification of probability distances.-Monge-Kantorovich mass transference problem, minimal distances and minimal norms.- Quantitative relationships between minimal distances and minimal norms.- K-Minimal metrics.- Relations between minimal and maximal distances.- Moment problems related to the theory of probability metrics: Relations between compound and primary distances.- Moment distances.- Uniformity in weak and vague convergence.- Glivenko-Cantelli theorem and Bernstein-Kantorovich invariance principle.- Stability of queueing systems.-Optimal quality usage.- Ideal metrics with respect to summation scheme for i.i.d. random variables.- Ideal metrics and rate of convergence in the CLT for random motions.- Applications of ideal metrics for sums of i.i.d. random variables to the problems of stability and approximation in risk theory.- How close are the individual and collective models in risk theory?- Ideal metric with respect to maxima scheme of i.i.d. random elements.- Ideal metrics and stability of characterizations of probability distributions.- Positive and negative de nite kernels and their properties.- Negative definite kernels and metrics: Recovering measures from potential.- Statistical estimates obtained by the minimal distances method.- Some statistical tests based on N-distances.- Distances defined by zonoids.- N-distance tests of uniformity on the hypersphere.-