Enhanced expression of potassium-chloride cotransporter KCC2 in human temporal lobe epilepsy

[1]  N. Jovanov-Milošević,et al.  Developmental Expression Patterns of KCC2 and Functionally Associated Molecules in the Human Brain. , 2016, Cerebral cortex.

[2]  J. A. Payne,et al.  Cation-chloride cotransporters in neuronal development, plasticity and disease , 2014, Nature Reviews Neuroscience.

[3]  J. Voipio,et al.  GABA actions and ionic plasticity in epilepsy , 2014, Current Opinion in Neurobiology.

[4]  I. Scheffer,et al.  A variant of KCC2 from patients with febrile seizures impairs neuronal Cl− extrusion and dendritic spine formation , 2014, EMBO reports.

[5]  K. Kaila,et al.  Modulation of neuronal activity by phosphorylation of the K–Cl cotransporter KCC2 , 2013, Trends in Neurosciences.

[6]  W. Löscher,et al.  Cation-chloride cotransporters NKCC1 and KCC2 as potential targets for novel antiepileptic and antiepileptogenic treatments , 2013, Neuropharmacology.

[7]  K. Kaila,et al.  An ion transport-independent role for the cation-chloride cotransporter KCC2 in dendritic spinogenesis in vivo. , 2013, Cerebral cortex.

[8]  K. Kaila,et al.  Activity-Dependent Cleavage of the K-Cl Cotransporter KCC2 Mediated by Calcium-Activated Protease Calpain , 2012, The Journal of Neuroscience.

[9]  Annapurna Poduri,et al.  Altered inhibition in tuberous sclerosis and type IIb cortical dysplasia , 2012, Annals of neurology.

[10]  Masahiko Watanabe,et al.  Redistribution of CB1 Cannabinoid Receptors in the Acute and Chronic Phases of Pilocarpine-Induced Epilepsy , 2011, PloS one.

[11]  C. Limatola,et al.  Anomalous levels of Cl− transporters cause a decrease of GABAergic inhibition in human peritumoral epileptic cortex , 2011, Epilepsia.

[12]  A. Aertsen,et al.  Positive shifts of the GABAA receptor reversal potential due to altered chloride homeostasis is widespread after status epilepticus , 2011, Epilepsia.

[13]  J. Poncer,et al.  The neuronal K-Cl cotransporter KCC2 influences postsynaptic AMPA receptor content and lateral diffusion in dendritic spines , 2011, Proceedings of the National Academy of Sciences.

[14]  G. Tamás,et al.  Differential distribution of KCC2 along the axo‐somato‐dendritic axis of hippocampal principal cells , 2010, The European journal of neuroscience.

[15]  Peter A. Groblewski,et al.  Chronic dysfunction of astrocytic inwardly rectifying K+ channels specific to the neocortical epileptic focus after fluid percussion injury in the rat. , 2010, Journal of neurophysiology.

[16]  T. Freund,et al.  Loss and reorganization of calretinin-containing interneurons in the epileptic human hippocampus. , 2010, Brain : a journal of neurology.

[17]  T. Freund,et al.  Dynamic changes of CB1‐receptor expression in hippocampi of epileptic mice and humans , 2010, Epilepsia.

[18]  Tero Viitanen,et al.  The K+–Cl− cotransporter KCC2 promotes GABAergic excitation in the mature rat hippocampus , 2010, The Journal of physiology.

[19]  Z. Maglóczky,et al.  Sprouting in human temporal lobe epilepsy: Excitatory pathways and axons of interneurons , 2010, Epilepsy Research.

[20]  O. Witte,et al.  Downregulation of Potassium Chloride Cotransporter KCC2 After Transient Focal Cerebral Ischemia , 2010, Stroke.

[21]  M. de Curtis,et al.  Reevaluating the mechanisms of focal ictogenesis: The role of low‐voltage fast activity , 2009, Epilepsia.

[22]  Z. Horváth,et al.  Survival of mossy cells of the hippocampal dentate gyrus in humans with mesial temporal lobe epilepsy. , 2009, Journal of neurosurgery.

[23]  Wei Zhang,et al.  Surviving Hilar Somatostatin Interneurons Enlarge, Sprout Axons, and Form New Synapses with Granule Cells in a Mouse Model of Temporal Lobe Epilepsy , 2009, The Journal of Neuroscience.

[24]  J. Connor,et al.  Development of epileptiform excitability in the deep entorhinal cortex after status epilepticus , 2009, The European journal of neuroscience.

[25]  M. de Curtis,et al.  Fast activity at seizure onset is mediated by inhibitory circuits in the entorhinal cortex in vitro , 2008, Annals of neurology.

[26]  Feiqi Zhu,et al.  Long-term expressional changes of Na+–K+–Cl− co-transporter 1 (NKCC1) and K+–Cl− co-transporter 2 (KCC2) in CA1 region of hippocampus following lithium-pilocarpine induced status epilepticus (PISE) , 2008, Brain Research.

[27]  T. Freund,et al.  Relationship between neuronal vulnerability and potassium-chloride cotransporter 2 immunoreactivity in hippocampus following transient forebrain ischemia , 2008, Neuroscience.

[28]  A. Galanopoulou Dissociated Gender-Specific Effects of Recurrent Seizures on GABA Signaling in CA1 Pyramidal Neurons: Role of GABAA Receptors , 2008, The Journal of Neuroscience.

[29]  K. Kaila,et al.  KCC2 Interacts with the Dendritic Cytoskeleton to Promote Spine Development , 2007, Neuron.

[30]  Hemal R. Pathak,et al.  Disrupted Dentate Granule Cell Chloride Regulation Enhances Synaptic Excitability during Development of Temporal Lobe Epilepsy , 2007, The Journal of Neuroscience.

[31]  R. Miles,et al.  Perturbed Chloride Homeostasis and GABAergic Signaling in Human Temporal Lobe Epilepsy , 2007, The Journal of Neuroscience.

[32]  J. DeFelipe,et al.  Cation‐Chloride Cotransporters and GABA‐ergic Innervation in the Human Epileptic Hippocampus , 2007, Epilepsia.

[33]  E. Aronica,et al.  Differential expression patterns of chloride transporters, Na+-K+-2Cl−-cotransporter and K+-Cl−-cotransporter, in epilepsy-associated malformations of cortical development , 2007, Neuroscience.

[34]  M. Hirata,et al.  Early Changes in KCC2 Phosphorylation in Response to Neuronal Stress Result in Functional Downregulation , 2007, The Journal of Neuroscience.

[35]  G. Buzsáki,et al.  Morphology and synaptic input of substance P receptor-immunoreactive interneurons in control and epileptic human hippocampus , 2007, Neuroscience.

[36]  G. Tamás,et al.  Excitatory Effect of GABAergic Axo-Axonic Cells in Cortical Microcircuits , 2006, Science.

[37]  T. Freund,et al.  Impaired and repaired inhibitory circuits in the epileptic human hippocampus , 2005, Trends in Neurosciences.

[38]  T. Freund,et al.  Surviving CA1 pyramidal cells receive intact perisomatic inhibitory input in the human epileptic hippocampus. , 2004, Brain : a journal of neurology.

[39]  Kohji Sato,et al.  Changes in chloride homeostasis-regulating gene expressions in the rat hippocampus following amygdala kindling , 2003, Brain Research.

[40]  Y. Isomura,et al.  Excitatory gaba input directly drives seizure-like rhythmic synchronization in mature hippocampal CA1 pyramidal cells , 2003, Neuroscience.

[41]  Anne Williamson,et al.  A Retrospective Analysis of Hippocampal Pathology in Human Temporal Lobe Epilepsy: Evidence for Distinctive Patient Subcategories , 2003, Epilepsia.

[42]  R. Nicoll,et al.  GABA Generates Excitement , 2003, Neuron.

[43]  L. Wittner,et al.  Synaptic reorganization of calbindin-positive neurons in the human hippocampal CA1 region in temporal lobe epilepsy , 2002, Neuroscience.

[44]  J. Voipio,et al.  BDNF-induced TrkB activation down-regulates the K+–Cl− cotransporter KCC2 and impairs neuronal Cl− extrusion , 2002, The Journal of cell biology.

[45]  R. Miles,et al.  On the Origin of Interictal Activity in Human Temporal Lobe Epilepsy in Vitro , 2002, Science.

[46]  T. Freund,et al.  Calretinin-Containing Interneurons Innervate Both Principal Cells and Interneurons in the CA1 Region of the Human Hippocampus , 2002, Acta biologica Hungarica.

[47]  Z. Borhegyi,et al.  Preservation of perisomatic inhibitory input of granule cells in the epileptic human dentate gyrus , 2001, Neuroscience.

[48]  N. Cooper,et al.  The mRNA level of the potassium-chloride cotransporter KCC2 covaries with seizure susceptibility in inferior colliculus of the post-ischemic audiogenic seizure-prone rat , 2001, Neuroscience Letters.

[49]  R. S. Sloviter,et al.  Focal inhibitory interneuron loss and principal cell hyperexcitability in the rat hippocampus after microinjection of a neurotoxic conjugate of saporin and a peptidase‐resistant analog of Substance P , 2001, The Journal of comparative neurology.

[50]  A. Sik,et al.  The KCl cotransporter, KCC2, is highly expressed in the vicinity of excitatory synapses in the rat hippocampus , 2001, The European journal of neuroscience.

[51]  M. Isokawa Remodeling Dendritic Spines of Dentate Granule Cells in Temporal Lobe Epilepsy Patients and the Rat Pilocarpine Model , 2000, Epilepsia.

[52]  A. Kivi,et al.  Alterations of Glial Cell Function in Temporal Lobe Epilepsy , 2000, Epilepsia.

[53]  Z. Borhegyi,et al.  Changes in the distribution and connectivity of interneurons in the epileptic human dentate gyrus , 2000, Neuroscience.

[54]  J Voipio,et al.  Pharmacological Isolation of the Synaptic and Nonsynaptic Components of the GABA-Mediated Biphasic Response in Rat CA1 Hippocampal Pyramidal Cells , 1999, The Journal of Neuroscience.

[55]  J. McNamara Emerging insights into the genesis of epilepsy , 1999, Nature.

[56]  J. A. Payne,et al.  The Neuron-specific K-Cl Cotransporter, KCC2 , 1999, The Journal of Biological Chemistry.

[57]  J. A. Payne,et al.  The K+/Cl− co-transporter KCC2 renders GABA hyperpolarizing during neuronal maturation , 1999, Nature.

[58]  G. Buzsáki,et al.  Interneurons of the hippocampus , 1998, Hippocampus.

[59]  I. Fried,et al.  Altered Hippocampal Kainate-Receptor mRNA Levels in Temporal Lobe Epilepsy Patients , 1998, Neurobiology of Disease.

[60]  C. Wilson,et al.  Paired pulse suppression and facilitation in human epileptogenic hippocampal formation , 1998, Epilepsy Research.

[61]  I. Fried,et al.  Human hippocampal AMPA and NMDA mRNA levels in temporal lobe epilepsy patients. , 1997, Brain : a journal of neurology.

[62]  J. A. Payne Functional characterization of the neuronal-specific K-Cl cotransporter: implications for [K+]oregulation. , 1997, American journal of physiology. Cell physiology.

[63]  J. Voipio,et al.  Long-Lasting GABA-Mediated Depolarization Evoked by High-Frequency Stimulation in Pyramidal Neurons of Rat Hippocampal Slice Is Attributable to a Network-Driven, Bicarbonate-Dependent K+ Transient , 1997, The Journal of Neuroscience.

[64]  R. Grossman,et al.  Disproportionate Loss of CA4 Parvalbumin‐immunoreactive Interneurons in Patients with Ammon's Horn Sclerosis , 1997, Journal of neuropathology and experimental neurology.

[65]  F. Dudek,et al.  Neuron loss, granule cell axon reorganization, and functional changes in the dentate gyrus of epileptic kainate‐treated rats , 1997 .

[66]  T. Freund,et al.  Loss of Calbindin-D28K immunoreactivity from dentate granule cells in human temporal lobe epilepsy , 1997, Neuroscience.

[67]  E. Cavalheiro,et al.  The Pilocarpine Model of Epilepsy in Mice , 1996, Epilepsia.

[68]  J. A. Payne,et al.  Molecular Characterization of a Putative K-Cl Cotransporter in Rat Brain , 1996, The Journal of Biological Chemistry.

[69]  C. Wilson,et al.  Decreased Neuronal Burst Discharge Near Site of Seizure Onset in Epileptic Human Temporal Lobes , 1996, Epilepsia.

[70]  G. Buzsáki,et al.  GABAergic inhibition of granule cells and hilar neuronal synchrony following ischemia-induced hilar neuronal loss , 1995, Neuroscience.

[71]  T. Babb,et al.  Circuit Mechanisms of Seizures in the Pilocarpine Model of Chronic Epilepsy: Cell Loss and Mossy Fiber Sprouting , 1993, Epilepsia.

[72]  T. Freund,et al.  Selective neuronal death in the contralateral hippocampus following unilateral kainate injections into the CA3 subfield , 1993, Neuroscience.

[73]  D. Lowenstein,et al.  Selective vulnerability of dentate hilar neurons following traumatic brain injury: a potential mechanistic link between head trauma and disorders of the hippocampus , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[74]  A. Ylinen,et al.  Behavioural, electrophysiological and histopathological changes following sustained stimulation of the perforant pathway input to the hippocampus: Effect of the NMDA receptor antagonist, CGP 39551 , 1991, Brain Research.

[75]  C. Houser GABA neurons in seizure disorders: A review of immunocytochemical studies , 1991, Neurochemical Research.

[76]  D. Spencer,et al.  A selective loss of somatostatin in the hippocampus of patients with temporal lobe epilepsy , 1991, Annals of neurology.

[77]  G. Cascino,et al.  Mossy fiber synaptic reorganization in the epileptic human temporal lobe , 1989, Annals of neurology.

[78]  J. H. Kim,et al.  Hippocampal interneuron loss and plasticity in human temporal lobe epilepsy , 1989, Brain Research.

[79]  J. Pretorius,et al.  Glutamate decarboxylase-immunoreactive neurons are preserved in human epileptic hippocampus , 1989, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[80]  R. S. Sloviter,et al.  Decreased hippocampal inhibition and a selective loss of interneurons in experimental epilepsy. , 1987, Science.

[81]  S. Laurberg,et al.  Lesion‐induced sprouting of hippocampal mossy fiber collaterals to the fascia dentata in developing and adult rats , 1981, The Journal of comparative neurology.

[82]  A. Wyler Surgery in Epilepsy , 1969, Journal of the Tennessee Medical Association.

[83]  J H Margerison,et al.  Epilepsy and the temporal lobes. A clinical, electroencephalographic and neuropathological study of the brain in epilepsy, with particular reference to the temporal lobes. , 1966, Brain : a journal of neurology.

[84]  J. Corsellis The incidence of Ammon's horn sclerosis. , 1957, Brain : a journal of neurology.

[85]  Y. Ben-Ari,et al.  Dendritic but not somatic GABAergic inhibition is decreased in experimental epilepsy , 2001, Nature Neuroscience.

[86]  J. Swann,et al.  Spine loss and other dendritic abnormalities in epilepsy , 2000, Hippocampus.

[87]  Charles L. Wilson,et al.  Neurophysiology of Epileptic Limbic Pathways in Intact Human Temporal Lobe , 1999 .

[88]  D. Häussinger,et al.  Functional significance of cell volume regulatory mechanisms. , 1998, Physiological reviews.

[89]  J. A. Payne,et al.  Functional characterization of the neuronal-specific K-Cl cotransporter: implications for [K+]o regulation. , 1997, The American journal of physiology.

[90]  P. Dunham,et al.  Membrane mechanisms and intracellular signalling in cell volume regulation. , 1995, International review of cytology.

[91]  R. Green Neuropathology and behavior in epilepsy , 1991 .