A priori error analysis for a finite element approximation of dynamic viscoelasticity problems involving a fractional order integro-differential constitutive law

We consider a fractional order viscoelasticity problem modelled by a power-law type stress relaxation function. This viscoelastic problem is a Volterra integral equation of the second kind with a weakly singular kernel where the convolution integral corresponds to fractional order differentiation/integration. We use a spatial finite element method and a finite difference scheme in time. Due to the weak singularity, fractional order integration in time is managed approximately by linear interpolation so that we can formulate a fully discrete problem. In this paper, we present a stability bound as well as a priori error estimates. Furthermore, we carry out numerical experiments with varying regularity of exact solutions at the end.

[1]  L. I. Sedov,et al.  Mechanics of continuous media , 1997 .

[2]  Mariam Al-Maskari,et al.  Galerkin FEM for a time-fractional Oldroyd-B fluid problem , 2018, Adv. Comput. Math..

[3]  Stig Larsson,et al.  The continuous Galerkin method for an integro-differential equation modeling dynamic fractional order viscoelasticity , 2010, 1405.5405.

[4]  Simon Shaw,et al.  Some partial differential Volterra equation problems arising in viscoelasticity , 1997 .

[5]  Beatrice Riviere,et al.  On the Constants in Inverse Inequalities in L 2 , 2010 .

[6]  R. Bagley,et al.  On the Appearance of the Fractional Derivative in the Behavior of Real Materials , 1984 .

[7]  Peter Linz,et al.  Theoretical Numerical Analysis: An Introduction to Advanced Techniques , 1979 .

[8]  Yunqing Huang,et al.  Developing Finite Element Methods for Maxwell's Equations in a Cole-Cole Dispersive Medium , 2011, SIAM J. Sci. Comput..

[9]  V. Thomée,et al.  Numerical solution via Laplace transforms of a fractional order evolution equation , 2010 .

[10]  J. S. Lai,et al.  Creep and Relaxation of Nonlinear Viscoelastic Materials , 2011 .

[11]  Philippe G. Ciarlet,et al.  On Korn’s inequality , 2010 .

[12]  S. Shaw,et al.  Finite element approximation and analysis of a viscoelastic scalar wave equation with internal variable formulations , 2020, J. Comput. Appl. Math..

[13]  Stig Larsson,et al.  Discretization of Integro-Differential Equations Modeling Dynamic Fractional Order Viscoelasticity , 2005, LSSC.

[14]  Agnieszka B. Malinowska,et al.  Introduction to the Fractional Calculus of Variations , 2012 .

[15]  P. Grisvard Elliptic Problems in Nonsmooth Domains , 1985 .

[16]  J. C. López-Marcos A difference scheme for a nonlinear partial integrodifferential equation , 1990 .

[17]  Christian Lubich,et al.  Adaptive, Fast, and Oblivious Convolution in Evolution Equations with Memory , 2006, SIAM J. Sci. Comput..

[18]  V. Thomée,et al.  Maximum-norm error analysis of a numerical solution via Laplace transformation and quadrature of a fractional-order evolution equation , 2010 .

[19]  P. G. Nutting,et al.  A new general law of deformation , 1921 .

[20]  Béatrice Rivière,et al.  Discontinuous Galerkin methods for solving elliptic and parabolic equations - theory and implementation , 2008, Frontiers in applied mathematics.

[21]  K. B. Oldham,et al.  The Fractional Calculus: Theory and Applications of Differentiation and Integration to Arbitrary Order , 1974 .

[22]  Mary F. Wheeler,et al.  Discontinuous Galerkin finite element methods for linear elasticity and quasistatic linear viscoelasticity , 2003, Numerische Mathematik.

[23]  William H. Offenhauser,et al.  Wild Boars as Hosts of Human-Pathogenic Anaplasma phagocytophilum Variants , 2012, Emerging infectious diseases.

[24]  Cornelius O. Horgan,et al.  On inequalities of Korn, Friedrichs and Babuška-Aziz , 1983 .

[25]  Vidar Thomée,et al.  Numerical solution of an evolution equation with a positive-type memory term , 1993, The Journal of the Australian Mathematical Society. Series B. Applied Mathematics.

[26]  J. Whiteman,et al.  Discontinuous Galerkin finite element methods for dynamic linear solid viscoelasticity problems , 2007 .

[27]  J. Hesthaven,et al.  On the constants in hp-finite element trace inverse inequalities , 2003 .

[28]  R. Koeller Applications of Fractional Calculus to the Theory of Viscoelasticity , 1984 .

[29]  M. Wheeler A Priori L_2 Error Estimates for Galerkin Approximations to Parabolic Partial Differential Equations , 1973 .

[30]  John M. Golden,et al.  Boundary Value Problems in Linear Viscoelasticity , 1988 .

[31]  M. Enelund,et al.  Formulation and integration of the standard linear viscoelastic solid with fractional order rate laws , 1999 .

[32]  Changpin Li,et al.  Numerical approaches to fractional calculus and fractional ordinary differential equation , 2011, J. Comput. Phys..

[33]  Maciej Niedziela,et al.  Notes on computational aspects of the fractional-order viscoelastic model , 2018 .

[34]  U. Grenander,et al.  Toeplitz Forms And Their Applications , 1958 .

[35]  K. Miller,et al.  An Introduction to the Fractional Calculus and Fractional Differential Equations , 1993 .

[36]  J. Nitsche On Korn's second inequality , 1981 .

[37]  S. Larsson,et al.  Space-time Discretization of an Integro-differential Equation Modeling Quasi-static Fractional-order Viscoelasticity , 2008 .