Mendelian randomization with a binary exposure variable: interpretation and presentation of causal estimates

[1]  James M. Robins,et al.  Partial Identification of the Average Treatment Effect Using Instrumental Variables: Review of Methods for Binary Instruments, Treatments, and Outcomes , 2018, Journal of the American Statistical Association.

[2]  Danny J. Smith,et al.  Cannabis use and risk of schizophrenia: a Mendelian randomization study , 2016, Molecular Psychiatry.

[3]  Eric Tchetgen Tchetgen,et al.  Bounded, efficient and multiply robust estimation of average treatment effects using instrumental variables , 2016, Journal of the Royal Statistical Society. Series B, Statistical methodology.

[4]  M. Hernán,et al.  Nature as a Trialist?: Deconstructing the Analogy Between Mendelian Randomization and Randomized Trials. , 2017, Epidemiology.

[5]  M. Munafo,et al.  Assessing causality in associations between cannabis use and schizophrenia risk: a two-sample Mendelian randomization study , 2016, Psychological Medicine.

[6]  G. Davey Smith,et al.  Consistent Estimation in Mendelian Randomization with Some Invalid Instruments Using a Weighted Median Estimator , 2016, Genetic epidemiology.

[7]  James M. Robins,et al.  On Modeling and Estimation for the Relative Risk and Risk Difference , 2015, 1510.02430.

[8]  J. Perry,et al.  Evidence of a Causal Association Between Insulinemia and Endometrial Cancer: A Mendelian Randomization Analysis , 2015, Journal of the National Cancer Institute.

[9]  G. Davey Smith,et al.  Mendelian randomization with invalid instruments: effect estimation and bias detection through Egger regression , 2015, International journal of epidemiology.

[10]  N. Timpson,et al.  Using published data in Mendelian randomization: a blueprint for efficient identification of causal risk factors , 2015, European Journal of Epidemiology.

[11]  S. Thompson,et al.  Mendelian Randomization , 2015 .

[12]  Eric J Tchetgen Tchetgen,et al.  Methodological Challenges in Mendelian Randomization , 2014, Epidemiology.

[13]  S. Burgess Sample size and power calculations in Mendelian randomization with a single instrumental variable and a binary outcome , 2014, International journal of epidemiology.

[14]  Peter M. Aronow,et al.  Beyond LATE: Estimation of the Average Treatment Effect with an Instrumental Variable , 2013, Political Analysis.

[15]  P. Visscher,et al.  Calculating statistical power in Mendelian randomization studies. , 2013, International journal of epidemiology.

[16]  A. Butterworth,et al.  Mendelian Randomization Analysis With Multiple Genetic Variants Using Summarized Data , 2013, Genetic epidemiology.

[17]  A. Butterworth,et al.  Use of Mendelian randomisation to assess potential benefit of clinical intervention , 2012, BMJ : British Medical Journal.

[18]  Tyler J VanderWeele,et al.  The effect of non-differential measurement error on bias, precision and power in Mendelian randomization studies. , 2012, International journal of epidemiology.

[19]  Roland R. Ramsahai,et al.  Likelihood analysis of the binary instrumental variable model , 2011 .

[20]  Joshua D. Angrist,et al.  Mostly Harmless Econometrics: An Empiricist's Companion , 2008 .

[21]  N. Sheehan,et al.  Mendelian randomization as an instrumental variable approach to causal inference , 2007, Statistical methods in medical research.

[22]  J. Robins,et al.  Instruments for Causal Inference: An Epidemiologist's Dream? , 2006, Epidemiology.

[23]  S. Lewis,et al.  Meta-analysis of MTHFR 677C→ T polymorphism and coronary heart disease: does totality of evidence support causal role for homocysteine and preventive potential of folate? , 2005, BMJ : British Medical Journal.

[24]  S. Ebrahim,et al.  'Mendelian randomization': can genetic epidemiology contribute to understanding environmental determinants of disease? , 2003, International journal of epidemiology.

[25]  R. Little,et al.  Inference for the Complier-Average Causal Effect From Longitudinal Data Subject to Noncompliance and Missing Data, With Application to a Job Training Assessment for the Unemployed , 2001 .

[26]  Guido W. Imbens,et al.  The Interpretation of Instrumental Variables Estimators in Simultaneous Equations Models with an Application to the Demand for Fish , 2000 .

[27]  Jeffrey M. Wooldridge,et al.  Introductory Econometrics: A Modern Approach , 1999 .

[28]  J. Pearl,et al.  Bounds on Treatment Effects from Studies with Imperfect Compliance , 1997 .

[29]  Joshua D. Angrist,et al.  Identification of Causal Effects Using Instrumental Variables , 1993 .