INTENSITY MAPPING OF THE [C ii] FINE STRUCTURE LINE DURING THE EPOCH OF REIONIZATION

The atomic C II fine-structure line is one of the brightest lines in a typical star-forming galaxy spectrum with a luminosity ~0.1%-1% of the bolometric luminosity. It is potentially a reliable tracer of the dense gas distribution at high redshifts and could provide an additional probe to the era of reionization. By taking into account the spontaneous, stimulated, and collisional emission of the C II line, we calculate the spin temperature and the mean intensity as a function of the redshift. When averaged over a cosmologically large volume, we find that the C II emission from ionized carbon in individual galaxies is larger than the signal generated by carbon in the intergalactic medium. Assuming that the C II luminosity is proportional to the carbon mass in dark matter halos, we also compute the power spectrum of the C II line intensity at various redshifts. In order to avoid the contamination from CO rotational lines at low redshift when targeting a C II survey at high redshifts, we propose the cross-correlation of C II and 21 cm line emission from high redshifts. To explore the detectability of the C II signal from reionization, we also evaluate the expected errors on the C II power spectrum and C II-21 cm cross power spectrum based on the design of the future millimeter surveys. We note that the C II-21 cm cross power spectrum contains interesting features that capture physics during reionization, including the ionized bubble sizes and the mean ionization fraction, which are challenging to measure from 21 cm data alone. We propose an instrumental concept for the reionization C II experiment targeting the frequency range of ~200-300 GHz with 1, 3, and 10 m apertures and a bolometric spectrometer array with 64 independent spectral pixels with about 20,000 bolometers.

[1]  D. Spergel,et al.  Detecting z > 10 Objects through Carbon, Nitrogen, and Oxygen Emission Lines , 1998, astro-ph/9803236.

[2]  The reliability of [CII] as a star formation rate indicator , 2011, 1106.1643.

[3]  S. Rawlings,et al.  A Virtual Sky with Extragalactic HI and CO Lines for the SKA and ALMA , 2009, 0908.0983.

[4]  S. M. Fall,et al.  Hubble Space Telescope Observations of Element Abundances in Low-Redshift Damped Lyα Galaxies and Implications for the Global Metallicity-Redshift Relation* , 2004, astro-ph/0409234.

[5]  S. Malhotra,et al.  Far-Infrared Spectroscopy of Normal Galaxies: Physical Conditions in the Interstellar Medium , 2001, astro-ph/0106485.

[6]  D. Osterbrock,et al.  Astrophysics of Gaseous Nebulae and Active Galactic Nuclei , 1989 .

[7]  James J. Bock,et al.  Z-Spec: a broadband, direct-detection, millimeter-wave spectrometer , 2003, SPIE Astronomical Telescopes + Instrumentation.

[8]  A. Stark,et al.  Detection of the 205 μm [N II] Line from the Carina Nebula , 2006, astro-ph/0610636.

[9]  J. Peacock,et al.  Stable clustering, the halo model and non-linear cosmological power spectra , 2002, astro-ph/0207664.

[10]  D. Arnett,et al.  Supernovae and Nucleosynthesis , 1996 .

[11]  Patrick Petitjean,et al.  Structure and evolution of the intergalactic medium from QSO absorption line system , 1997 .

[12]  L. Knox,et al.  Determination of inflationary observables by cosmic microwave background anisotropy experiments. , 1995, Physical review. D, Particles and fields.

[13]  F. Walter,et al.  A kiloparsec-scale hyper-starburst in a quasar host less than 1 gigayear after the Big Bang , 2009, Nature.

[14]  A. Poglitsch,et al.  The 158 micron forbidden C II line - A measure of global star formation activity in galaxies , 1991 .

[15]  S. Rawlings,et al.  A VIRTUAL SKY WITH EXTRAGALACTIC H i AND CO LINES FOR THE SQUARE KILOMETRE ARRAY AND THE ATACAMA LARGE MILLIMETER/SUBMILLIMETER ARRAY , 2009 .

[16]  Harvard,et al.  Detectability of [C II] 158 μm Emission from High-Redshift Galaxies: Predictions for ALMA and SPICA , 2006, astro-ph/0601155.

[17]  Ravi K. Sheth Giuseppe Tormen Large scale bias and the peak background split , 1999 .

[18]  C. Hernandez-Monteagudo,et al.  CMB observations and the production of chemical elements at the end of the dark ages , 2004 .

[19]  B. Brown Proceedings of the Society of Photo-optical Instrumentation Engineers , 1975 .

[20]  S. Rawlings,et al.  SIMULATION OF THE COSMIC EVOLUTION OF ATOMIC AND MOLECULAR HYDROGEN IN GALAXIES , 2009 .

[21]  R. McCray,et al.  Heating and Ionization of HI Regions , 1972 .

[22]  Andrew M. Hopkins,et al.  THE STAR FORMATION RATE IN THE REIONIZATION ERA AS INDICATED BY GAMMA-RAY BURSTS , 2009, 0906.0590.

[23]  Asantha Cooray,et al.  PROBING REIONIZATION WITH INTENSITY MAPPING OF MOLECULAR AND FINE-STRUCTURE LINES , 2011, 1101.2892.

[24]  R. Malaney,et al.  Star Formation and Chemical Evolution in Damped LY alpha Clouds , 1995, astro-ph/9510078.

[25]  Charles L. Bennett,et al.  Preliminary spectral observations of the Galaxy with a 7 deg beam by the Cosmic Background Explorer (COBE) , 1991 .

[26]  Charles H. Townes,et al.  Far-infrared spectroscopy of galaxies - The 158 micron C(+) line and the energy balance of molecular clouds , 1985 .

[27]  C. Johnson,et al.  Fine-structure population ratios for the 2P ground state of C II , 1986 .

[28]  P. Brax,et al.  Brane bremsstrahlung in DBI inflation , 2009, 0912.0806.

[29]  C. L. Carilli,et al.  INTENSITY MAPPING OF MOLECULAR GAS DURING COSMIC REIONIZATION , 2011, 1102.0745.

[30]  Z. Haiman,et al.  Delayed Enrichment by Unseen Galaxies: Explaining the Rapid Rise in IGM CIV Absorption from z = 6-5 , 2010, 1007.3581.

[31]  C. Breuck,et al.  Enhanced [CII] emission in a z = 4.76 submillimetre galaxy , 2011, 1104.5250.

[32]  J. Peacock,et al.  Simulations of the formation, evolution and clustering of galaxies and quasars , 2005, Nature.

[33]  Eli Visbal,et al.  Measuring the 3D clustering of undetected galaxies through cross correlation of their cumulative flux fluctuations from multiple spectral lines , 2010, 1008.3178.

[34]  C II Radiative Cooling of the Diffuse Gas in the Milky Way , 2004, astro-ph/0407363.

[35]  M. Rees,et al.  The Radiative Feedback of the First Cosmological Objects , 1999, astro-ph/9903336.

[36]  D. Osterbrock,et al.  Astrophysics of Gaseous Nebulae , 1976 .

[37]  G. Lucia,et al.  The hierarchical formation of the brightest cluster galaxies , 2006, astro-ph/0606519.

[38]  R. Aikin,et al.  THE WARM MOLECULAR GAS AROUND THE CLOVERLEAF QUASAR , 2009, 0908.1818.

[39]  Garth D. Illingworth,et al.  z ~ 7-10 Galaxies in the HUDF and GOODS Fields: UV Luminosity Functions , 2008, 0803.0548.

[40]  L. Spitzer Physical processes in the interstellar medium , 1998 .

[41]  Edward J. Wollack,et al.  FIVE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE OBSERVATIONS: COSMOLOGICAL INTERPRETATION , 2008, 0803.0547.

[42]  V. Hristov,et al.  Observation of forbidden C II 158 micron emission from the diffuse interstellar medium at high Galactic latitude , 1993 .

[43]  George B. Field,et al.  Excitation of the Hydrogen 21-CM Line , 1958, Proceedings of the IRE.

[44]  James Aguirre,et al.  INTENSITY MAPPING WITH CARBON MONOXIDE EMISSION LINES AND THE REDSHIFTED 21 cm LINE , 2011, 1104.4800.

[45]  S. Tayal Electron impact excitation collision strength for transitions in C II , 2008 .

[46]  A. Tielens,et al.  Photodissociation regions. I - Basic model. II - A model for the Orion photodissociation region , 1985 .

[47]  S. M. Fall,et al.  Cosmic chemical evolution , 1995 .

[48]  S. M. Fall,et al.  Cosmic Histories of Stars, Gas, Heavy Elements, and Dust in Galaxies , 1998, astro-ph/9812182.

[49]  G. Gavazzi,et al.  [CII] at 158 mu m as a star formation tracer in late-type galaxies , 2002, astro-ph/0201471.

[50]  D. Benford,et al.  A 158 μm [C ii] LINE SURVEY OF GALAXIES AT z ∼ 1–2: AN INDICATOR OF STAR FORMATION IN THE EARLY UNIVERSE , 2010, 1009.4216.

[51]  U. Irvine,et al.  Fast large volume simulations of the 21-cm signal from the reionization and pre-reionization epochs , 2009, 0911.2219.

[52]  A. Tielens,et al.  The neutral atomic phases of the interstellar medium , 1995 .

[53]  M. Baes,et al.  The reliability of [C ii] as an indicator of the star formation rate , 2011 .

[54]  S. A. Wouthuysen On the excitation mechanism of the 21-cm (radio-frequency) interstellar hydrogen emission line. , 1952 .