Parameter identification for a nonlinear enzyme-catalytic dynamic system with time-delays

In this paper, we consider a nonlinear enzyme-catalytic dynamical system with uncertain system parameters and state-delays for describing the process of batch culture. Some important properties of the time-delay system are discussed. Taking account of the difficulty in accurately measuring the concentrations of intracellular substances and the absence of equilibrium points for the time-delay system, we define quantitatively biological robustness of the intracellular substance concentrations for the entire process of batch culture to identify the uncertain system parameters and state-delays. Taking the defined biological robustness as a cost function, we establish an identification model subject to the time-delay system, continuous state inequality constraints and parameter constraints. By a penalty approach, this model can be converted into a sequence of nonlinear programming submodels. In consideration of both the difficulty in finding analytical solutions and the complexity of numerical solution to the nonlinear system, based on an improved simulated annealing, we develop a parallelized synchronous algorithm to solve these nonlinear programming submodels. An illustrative numerical example shows the appropriateness of the optimal system parameters and state-delays as well as the validity of the parallel algorithm.

[1]  Elijah Polak,et al.  Optimization: Algorithms and Consistent Approximations , 1997 .

[2]  K. Teo,et al.  A class of optimal state-delay control problems , 2013 .

[3]  Enmin Feng,et al.  Robust identification and its properties of nonlinear bilevel multi-stage dynamic system , 2013, Appl. Math. Comput..

[4]  Esin Onbasçioglu,et al.  Parallel Simulated Annealing Algorithms in Global Optimization , 2001, J. Glob. Optim..

[5]  Enmin Feng,et al.  Sensitivity analysis and identification of kinetic parameters in batch fermentation of glycerol , 2012, J. Comput. Appl. Math..

[6]  Hiroaki Kitano,et al.  Violations of robustness trade-offs , 2010, Molecular systems biology.

[7]  Chongyang Liu,et al.  From the SelectedWorks of Chongyang Liu 2013 Modelling and parameter identification for a nonlinear time-delay system in microbial batch fermentation , 2017 .

[8]  Enmin Feng,et al.  Joint estimation in batch culture by using unscented kalman filter , 2012, Biotechnology and Bioprocess Engineering.

[9]  A. Zeng,et al.  High concentration and productivity of 1,3-propanediol from continuous fermentation of glycerol by Klebsiella pneumoniae , 1997 .

[10]  Enmin Feng,et al.  Identification and robustness analysis of nonlinear hybrid dynamical system concerning glycerol transport mechanism , 2012, Comput. Chem. Eng..

[11]  Kok Lay Teo,et al.  An Optimization Approach to State-Delay Identification $ $ , 2010, IEEE Transactions on Automatic Control.

[12]  D S Callaway,et al.  Network robustness and fragility: percolation on random graphs. , 2000, Physical review letters.

[13]  Hironori Hirata,et al.  Block placement by improved simulated annealing based on genetic algorithm , 1992 .

[14]  Jerald Hendrix,et al.  A theoretical and empirical investigation of delayed growth response in the continuous culture of bacteria. , 2003, Journal of theoretical biology.

[15]  Stephen J. Wright,et al.  Numerical Optimization , 2018, Fundamental Statistical Inference.

[16]  Enmin Feng,et al.  Identification and robustness analysis of nonlinear multi-stage enzyme-catalytic dynamical system in batch culture , 2015 .

[17]  K. Teo,et al.  A unified parameter identification method for nonlinear time-delay systems , 2013 .

[18]  Enmin Feng,et al.  Modelling and pathway identification involving the transport mechanism of a complex metabolic system in batch culture , 2014, Commun. Nonlinear Sci. Numer. Simul..

[19]  Matjaž Perc,et al.  Noise enhances robustness of intracellular Ca2+ oscillations , 2003 .

[20]  Robert L. Smith,et al.  Simulated annealing for constrained global optimization , 1994, J. Glob. Optim..

[21]  Zhilong Xiu,et al.  Mathematical modeling of glycerol fermentation by Klebsiella pneumoniae: Concerning enzyme-catalytic reductive pathway and transport of glycerol and 1,3-propanediol across cell membrane , 2008 .

[22]  H. Kitano Towards a theory of biological robustness , 2007, Molecular systems biology.

[23]  Hideo Tanaka,et al.  Modified simulated annealing algorithms for the flow shop sequencing problem , 1995 .

[24]  Kathryn A. Dowsland,et al.  Simulated Annealing , 1989, Encyclopedia of GIS.

[25]  Enmin Feng,et al.  Robust identification of enzymatic nonlinear dynamical systems for 1, 3-propanediol transport mechanisms in microbial batch culture , 2014, Appl. Math. Comput..

[26]  Lei Wang,et al.  Determining the transport mechanism of an enzyme-catalytic complex metabolic network based on biological robustness , 2013, Bioprocess and Biosystems Engineering.

[27]  U. Alon,et al.  Robustness in bacterial chemotaxis , 2022 .

[28]  John Lygeros,et al.  On the control of uncertain impulsive systems: approximate stabilization and controlled invariance , 2004 .

[29]  Behzad Moshiri,et al.  Optimal control of a nonlinear fed-batch fermentation process using model predictive approach , 2009 .

[30]  S. Leibler,et al.  Robustness in simple biochemical networks , 1997, Nature.

[31]  Carine Jauberthie,et al.  Identifiability of a nonlinear delayed-differential aerospace model , 2006, IEEE Transactions on Automatic Control.

[32]  Hannu Ahonen,et al.  Simulated annealing and tabu search approaches for the Corridor Allocation Problem , 2014, Eur. J. Oper. Res..

[33]  Marco A. López,et al.  Semi-infinite programming : recent advances , 2001 .

[34]  K. Teo,et al.  THE CONTROL PARAMETERIZATION METHOD FOR NONLINEAR OPTIMAL CONTROL: A SURVEY , 2013 .

[35]  Matjaz Perc,et al.  Sensitivity and flexibility of regular and chaotic calcium oscillations. , 2003, Biophysical chemistry.

[36]  Enmin Feng,et al.  Existence of equilibrium points and stability of the nonlinear dynamical system in microbial continuous cultures , 2009, Appl. Math. Comput..

[37]  Bernt Wennberg,et al.  State elimination and identifiability of the delay parameter for nonlinear time-delay systems , 2008, Autom..

[38]  Jean-Pierre Richard,et al.  Time-delay systems: an overview of some recent advances and open problems , 2003, Autom..

[39]  Jack K. Hale,et al.  Introduction to Functional Differential Equations , 1993, Applied Mathematical Sciences.

[40]  Hiroaki Kitano,et al.  Biological robustness , 2008, Nature Reviews Genetics.

[41]  Enmin Feng,et al.  Modeling and parameter identification of microbial bioconversion in fed-batch cultures , 2008 .

[42]  Yan Gao,et al.  On the Reachability Problem for Uncertain Hybrid Systems , 2007, IEEE Transactions on Automatic Control.

[43]  Wolf-Dieter Deckwer,et al.  Synthesis, properties and biodegradability of polyesters based on 1,3‐propanediol , 1994 .

[44]  José A. García-Rodríguez,et al.  An efficient implementation of parallel simulated annealing algorithm in GPUs , 2012, Journal of Global Optimization.

[45]  Michal Czapinski,et al.  Parallel Simulated Annealing with Genetic Enhancement for flowshop problem with Csum , 2010, Comput. Ind. Eng..

[46]  Enmin Feng,et al.  Modeling nonlinear stochastic kinetic system and stochastic optimal control of microbial bioconversion process in batch culture , 2013 .

[47]  J. Stelling,et al.  Robustness of Cellular Functions , 2004, Cell.

[48]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[49]  Lei Wang Modelling and Regularity of Nonlinear Impulsive Switching Dynamical System in Fed-Batch Culture , 2012 .

[50]  Kok Lay Teo,et al.  A new exact penalty method for semi-infinite programming problems , 2014, J. Comput. Appl. Math..

[51]  Enmin Feng,et al.  Robust analysis of hybrid dynamical systems for 1, 3-propanediol transport mechanisms in microbial continuous fermentation , 2011, Math. Comput. Model..