Multi-state quantum simulations via model-space quantum imaginary time evolution

[1]  S. Ten-no,et al.  Quantum Inverse Algorithm via Adaptive Variational Quantum Linear Solver: Applications to General Eigenstates. , 2023, The journal of physical chemistry. A.

[2]  Pavel A. Dub,et al.  Quantum Simulation of Molecular Electronic States with a Transcorrelated Hamiltonian: Higher Accuracy with Fewer Qubits. , 2022, Journal of chemical theory and computation.

[3]  Yan Zhao,et al.  Orthogonal State Reduction Variational Eigensolver for the Excited-State Calculations on Quantum Computers. , 2022, Journal of chemical theory and computation.

[4]  S. Ten-no,et al.  Improved Algorithms of Quantum Imaginary Time Evolution for Ground and Excited States of Molecular Systems. , 2022, Journal of chemical theory and computation.

[5]  Pavel A. Dub,et al.  Quantum Davidson Algorithm for Excited States , 2022, 2204.10741.

[6]  Jinzhao Sun,et al.  Efficient Quantum Imaginary Time Evolution by Drifting Real-Time Evolution: An Approach with Low Gate and Measurement Complexity. , 2022, Journal of chemical theory and computation.

[7]  A. Alavi,et al.  Orders of magnitude reduction in the computational overhead for quantum many-body problems on quantum computers via an exact transcorrelated method , 2022, 2201.03049.

[8]  Jie Liu,et al.  Equation-of-Motion Theory to Calculate Accurate Band Structures with a Quantum Computer. , 2021, The journal of physical chemistry letters.

[9]  Theodore J. Yoder,et al.  Scalable error mitigation for noisy quantum circuits produces competitive expectation values , 2021, Nature Physics.

[10]  M. Benedetti,et al.  Filtering variational quantum algorithms for combinatorial optimization , 2021, Quantum Science and Technology.

[11]  K. Ho,et al.  Adaptive Variational Quantum Imaginary Time Evolution Approach for Ground State Preparation , 2021, Advanced Quantum Technologies.

[12]  M. Cerezo,et al.  Variational quantum algorithms , 2020, Nature Reviews Physics.

[13]  Keisuke Fujii,et al.  Qulacs: a fast and versatile quantum circuit simulator for research purpose , 2020, Quantum.

[14]  F. Buda,et al.  A state-averaged orbital-optimized hybrid quantum–classical algorithm for a democratic description of ground and excited states , 2020, Quantum Science and Technology.

[15]  R. Pooser,et al.  Scattering in the Ising model with the quantum Lanczos algorithm , 2020, New Journal of Physics.

[16]  K. Ho,et al.  Efficient step-merged quantum imaginary time evolution algorithm for quantum chemistry. , 2020, Journal of chemical theory and computation.

[17]  D. Tew,et al.  Improving the accuracy of quantum computational chemistry using the transcorrelated method , 2020, 2006.11181.

[18]  H. Fan,et al.  Probabilistic nonunitary gate in imaginary time evolution , 2020, Quantum Information Processing.

[19]  R. Pooser,et al.  Practical quantum computation of chemical and nuclear energy levels using quantum imaginary time evolution and Lanczos algorithms , 2019, npj Quantum Information.

[20]  Francesco A. Evangelista,et al.  A Multireference Quantum Krylov Algorithm for Strongly Correlated Electrons. , 2019, Journal of chemical theory and computation.

[21]  J. Whitfield,et al.  Reducing qubit requirements for quantum simulation using molecular point group symmetries. , 2019, Journal of chemical theory and computation.

[22]  Johannes L. Schönberger,et al.  SciPy 1.0: fundamental algorithms for scientific computing in Python , 2019, Nature Methods.

[23]  Robert A. Lang,et al.  Exact and approximate symmetry projectors for the electronic structure problem on a quantum computer. , 2019, The Journal of chemical physics.

[24]  Nicholas J. Mayhall,et al.  Efficient symmetry-preserving state preparation circuits for the variational quantum eigensolver algorithm , 2019, npj Quantum Information.

[25]  F. Brandão,et al.  Determining eigenstates and thermal states on a quantum computer using quantum imaginary time evolution , 2019, Nature Physics.

[26]  Harper R. Grimsley,et al.  An adaptive variational algorithm for exact molecular simulations on a quantum computer , 2018, Nature Communications.

[27]  Nicolas P. D. Sawaya,et al.  Quantum Chemistry in the Age of Quantum Computing. , 2018, Chemical reviews.

[28]  K. B. Whaley,et al.  Generalized Unitary Coupled Cluster Wave functions for Quantum Computation. , 2018, Journal of chemical theory and computation.

[29]  Scott N. Genin,et al.  Constrained Variational Quantum Eigensolver: Quantum Computer Search Engine in the Fock Space. , 2018, Journal of chemical theory and computation.

[30]  S. Brierley,et al.  Variational Quantum Computation of Excited States , 2018, Quantum.

[31]  J. Gambetta,et al.  Error mitigation extends the computational reach of a noisy quantum processor , 2018, Nature.

[32]  Xiao Yuan,et al.  Variational ansatz-based quantum simulation of imaginary time evolution , 2018, npj Quantum Information.

[33]  John Preskill,et al.  Quantum Computing in the NISQ era and beyond , 2018, Quantum.

[34]  Yudong Cao,et al.  OpenFermion: the electronic structure package for quantum computers , 2017, Quantum Science and Technology.

[35]  Andrew W. Cross,et al.  Quantum optimization using variational algorithms on near-term quantum devices , 2017, Quantum Science and Technology.

[36]  S. Ten-no Multi-state effective Hamiltonian and size-consistency corrections in stochastic configuration interactions. , 2017, The Journal of chemical physics.

[37]  J. Gambetta,et al.  Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets , 2017, Nature.

[38]  Sandeep Sharma,et al.  PySCF: the Python‐based simulations of chemistry framework , 2017, 1701.08223.

[39]  J. McClean,et al.  Strategies for quantum computing molecular energies using the unitary coupled cluster ansatz , 2017, Quantum Science and Technology.

[40]  J. O'Brien,et al.  Witnessing eigenstates for quantum simulation of Hamiltonian spectra , 2016, Science Advances.

[41]  Alán Aspuru-Guzik,et al.  The theory of variational hybrid quantum-classical algorithms , 2015, 1509.04279.

[42]  Ali Alavi,et al.  An excited-state approach within full configuration interaction quantum Monte Carlo. , 2015, The Journal of chemical physics.

[43]  E. Farhi,et al.  A Quantum Approximate Optimization Algorithm , 2014, 1411.4028.

[44]  Alán Aspuru-Guzik,et al.  A variational eigenvalue solver on a photonic quantum processor , 2013, Nature Communications.

[45]  Seiichiro Ten-no,et al.  Stochastic determination of effective Hamiltonian for the full configuration interaction solution of quasi-degenerate electronic states. , 2013, The Journal of chemical physics.

[46]  Garnet Kin-Lic Chan,et al.  Communication: Excited states, dynamic correlation functions and spectral properties from full configuration interaction quantum Monte Carlo. , 2012, The Journal of chemical physics.

[47]  Isaac L. Chuang,et al.  Quantum Computation and Quantum Information (10th Anniversary edition) , 2011 .

[48]  Shigeru Nagase,et al.  Projector Monte Carlo method based on Slater determinants: Test application to singlet excited states of H2O and LiF , 2010 .

[49]  Kevin Barraclough,et al.  I and i , 2001, BMJ : British Medical Journal.

[50]  Paul S. Bagus,et al.  Electronic structure theory , 1981 .

[51]  J. Dales,et al.  Contributors , 1966, The China Quarterly.

[52]  P. Löwdin On the Non‐Orthogonality Problem Connected with the Use of Atomic Wave Functions in the Theory of Molecules and Crystals , 1950 .

[53]  W. Hager,et al.  and s , 2019, Shallow Water Hydraulics.

[54]  W. Marsden I and J , 2012 .

[55]  I. Mayer On Löwdin's method of symmetric orthogonalization* , 2002 .

[56]  A. Szabó,et al.  Modern quantum chemistry : introduction to advanced electronic structure theory , 1982 .