An adaptative augmented Lagrangian method for three-dimensional multimaterial flows

Abstract The direct numerical simulation of incompressible multimaterial flows, based on predictor/corrector and volume of fluid (VOF) approaches is presented. An original adaptative augmented Lagrangian method is proposed to solve the predictor solution, satisfying at the same time the conservation equations as well as the incompressibility constraint. This algorithm is based on an Uzawa optimisation technique. The corrector solution is obtained with a projection method on a divergence free subspace. Several examples of two- and three-dimensional flows are proposed to illustrate the ability of the method to deal with unsteady, multimaterial problems.

[1]  Henk A. van der Vorst,et al.  Bi-CGSTAB: A Fast and Smoothly Converging Variant of Bi-CG for the Solution of Nonsymmetric Linear Systems , 1992, SIAM J. Sci. Comput..

[2]  R. Temam Une méthode d'approximation de la solution des équations de Navier-Stokes , 1968 .

[3]  Jacques Magnaudet,et al.  Accelerated flows past a rigid sphere or a spherical bubble. Part 1. Steady straining flow , 1995, Journal of Fluid Mechanics.

[4]  F. Hecht,et al.  A POSTERIORI ANALYSIS OF A PENALTY METHOD AND APPLICATION TO THE STOKES PROBLEM , 2003 .

[5]  A. Quarteroni,et al.  Factorization methods for the numerical approximation of Navier-Stokes equations , 2000 .

[6]  Stéphane P. Vincent,et al.  Sur une méthode de pénalisation tensorielle pour la résolution des équations de Navier-Stokes , 2001 .

[7]  J. Caltagirone,et al.  International Journal for Numerical Methods in Fluids Efficient Solving Method for Unsteady Incompressible Interfacial Flow Problems , 2022 .

[8]  C. W. Hirt,et al.  Volume of fluid (VOF) method for the dynamics of free boundaries , 1981 .

[9]  B. V. Dean,et al.  Studies in Linear and Non-Linear Programming. , 1959 .

[10]  J. W. Eastwood,et al.  Springer series in computational physics Editors: H. Cabannes, M. Holt, H.B. Keller, J. Killeen and S.A. Orszag , 1984 .

[11]  R. Glowinski,et al.  Méthodes de Lagrangien augmenté : applications à la résolution numérique de problèmes aux limites , 1982 .

[12]  Graham F. Carey,et al.  Convergence of iterative methods in penalty finite element approximation of the Navier-Stokes equations , 1987 .

[13]  K. Goda,et al.  A multistep technique with implicit difference schemes for calculating two- or three-dimensional cavity flows , 1979 .

[14]  J. Caltagirone,et al.  Sur une méthode de projection vectorielle pour la résolution des équations de Navier-Stokes , 1999 .

[15]  J. Kan A second-order accurate pressure correction scheme for viscous incompressible flow , 1986 .

[16]  J. Caltagirone,et al.  A One-Cell Local Multigrid Method for Solving Unsteady Incompressible Multiphase Flows , 2000 .

[17]  T. Taylor,et al.  Computational methods for fluid flow , 1982 .

[18]  D. J. Torres,et al.  On the theory and computation of surface tension: the elimination of parasitic currents through energy conservation in the second-gradient method , 2002 .

[19]  J. Brackbill,et al.  A continuum method for modeling surface tension , 1992 .

[20]  S. Zaleski,et al.  DIRECT NUMERICAL SIMULATION OF FREE-SURFACE AND INTERFACIAL FLOW , 1999 .

[21]  Jean-Luc Guermond,et al.  Un résultat de convergence d'ordre deux en temps pour l'approximation des équations de Navier-Stokes par une technique de projection incrémentale , 1999 .

[22]  P. Bonmarin,et al.  Geometric properties of deep-water breaking waves , 1989, Journal of Fluid Mechanics.

[23]  J. Happel,et al.  Low Reynolds number hydrodynamics , 1965 .

[24]  D. H. Peregrine,et al.  Breaking Waves on Beaches , 1983 .

[25]  F. Harlow,et al.  Numerical Calculation of Time‐Dependent Viscous Incompressible Flow of Fluid with Free Surface , 1965 .

[26]  A. Chorin Numerical solution of the Navier-Stokes equations , 1968 .

[27]  S. Patankar Numerical Heat Transfer and Fluid Flow , 2018, Lecture Notes in Mechanical Engineering.