Genome-wide association analysis identifies variation in vitamin D receptor and other host factors influencing the gut microbiota

[1]  F. Bäckhed,et al.  Hepatocyte MyD88 affects bile acids, gut microbiota and metabolome contributing to regulate glucose and lipid metabolism , 2016, Gut.

[2]  Hanns-Ulrich Marschall,et al.  Intestinal Crosstalk between Bile Acids and Microbiota and Its Impact on Host Metabolism. , 2016, Cell metabolism.

[3]  Jun Sun VDR/vitamin D receptor regulates autophagic activity through ATG16L1 , 2016, Autophagy.

[4]  S. Szymczak,et al.  Genome-wide association study of serum coenzyme Q10 levels identifies susceptibility loci linked to neuronal diseases. , 2016, Human molecular genetics.

[5]  Søren Brunak,et al.  Analysis of five chronic inflammatory diseases identifies 27 new associations and highlights disease-specific patterns at shared loci , 2016, Nature Genetics.

[6]  K. Nicolaides,et al.  Prognostic and mechanistic potential of progesterone sulfates in intrahepatic cholestasis of pregnancy and pruritus gravidarum , 2015, Hepatology.

[7]  Katherine H. Huang,et al.  Host genetic variation impacts microbiome composition across human body sites , 2015, Genome Biology.

[8]  Wei Xu,et al.  Assessment and Selection of Competing Models for Zero-Inflated Microbiome Data , 2015, PloS one.

[9]  Yinglin Xia,et al.  Lack of Vitamin D Receptor Causes Dysbiosis and Changes the Functions of the Murine Intestinal Microbiome. , 2015, Clinical therapeutics.

[10]  J. Hampe,et al.  IL-6 blockade by monoclonal antibodies inhibits apolipoprotein (a) expression and lipoprotein (a) synthesis in humans[S] , 2015, Journal of Lipid Research.

[11]  Rustem F. Ismagilov,et al.  Indigenous Bacteria from the Gut Microbiota Regulate Host Serotonin Biosynthesis , 2015, Cell.

[12]  Andre Franke,et al.  Analysis of intestinal microbiota in hybrid house mice reveals evolutionary divergence in a vertebrate hologenome , 2015, Nature Communications.

[13]  J. Hirschhorn,et al.  Biological interpretation of genome-wide association studies using predicted gene functions , 2015, Nature Communications.

[14]  P. Rosenstiel,et al.  Geographical patterns of the standing and active human gut microbiome in health and IBD , 2015, Gut.

[15]  Rohita Sinha,et al.  Host genetics and diet, but not immunoglobulin A expression, converge to shape compositional features of the gut microbiome in an advanced intercross population of mice , 2014, Genome Biology.

[16]  Angela C. Poole,et al.  Human Genetics Shape the Gut Microbiome , 2014, Cell.

[17]  Ross M. Fraser,et al.  Defining the role of common variation in the genomic and biological architecture of adult human height , 2014, Nature Genetics.

[18]  I. Polanco,et al.  The HLA-DQ2 genotype selects for early intestinal microbiota composition in infants at high risk of developing coeliac disease , 2014, Gut.

[19]  S. Heikkinen,et al.  Patterns of Genome-Wide VDR Locations , 2014, PloS one.

[20]  Björn Usadel,et al.  Trimmomatic: a flexible trimmer for Illumina sequence data , 2014, Bioinform..

[21]  Lawrence A. David,et al.  Diet rapidly and reproducibly alters the human gut microbiome , 2013, Nature.

[22]  M. Fujimiya,et al.  Characteristics of Japanese inflammatory bowel disease susceptibility loci , 2014, Journal of Gastroenterology.

[23]  Robert C. Edgar,et al.  UPARSE: highly accurate OTU sequences from microbial amplicon reads , 2013, Nature Methods.

[24]  M. Icaza-Chávez,et al.  Gut microbiota in health and disease , 2013 .

[25]  G. Srinivas,et al.  Genome-wide mapping of gene–microbiota interactions in susceptibility to autoimmune skin blistering , 2013, Nature Communications.

[26]  Mathieu Almeida,et al.  Dietary intervention impact on gut microbial gene richness , 2013, Nature.

[27]  T. Kawaguchi,et al.  Two susceptibility loci to Takayasu arteritis reveal a synergistic role of the IL12B and HLA-B regions in a Japanese population. , 2013, American journal of human genetics.

[28]  Sarah L. Westcott,et al.  Development of a Dual-Index Sequencing Strategy and Curation Pipeline for Analyzing Amplicon Sequence Data on the MiSeq Illumina Sequencing Platform , 2013, Applied and Environmental Microbiology.

[29]  Judy H. Cho,et al.  Dense genotyping of immune-related disease regions identifies nine new risk loci for primary sclerosing cholangitis , 2013, Nature Genetics.

[30]  Ateequr Rehman,et al.  Smoking Cessation Induces Profound Changes in the Composition of the Intestinal Microbiota in Humans , 2013, PloS one.

[31]  F. Bäckhed,et al.  Gut microbiota regulates bile acid metabolism by reducing the levels of tauro-beta-muricholic acid, a naturally occurring FXR antagonist. , 2013, Cell metabolism.

[32]  P. Turnbaugh,et al.  Xenobiotics Shape the Physiology and Gene Expression of the Active Human Gut Microbiome , 2013, Cell.

[33]  David C. Wilson,et al.  Host-microbe interactions have shaped the genetic architecture of inflammatory bowel disease , 2012, Nature.

[34]  B. Bjørndal,et al.  Krill powder increases liver lipid catabolism and reduces glucose mobilization in tumor necrosis factor-alpha transgenic mice fed a high-fat diet. , 2012, Metabolism: clinical and experimental.

[35]  Robert W. Williams,et al.  Murine Gut Microbiota Is Defined by Host Genetics and Modulates Variation of Metabolic Traits , 2012, PloS one.

[36]  D. Relman,et al.  The Application of Ecological Theory Toward an Understanding of the Human Microbiome , 2012, Science.

[37]  J. Clemente,et al.  Human gut microbiome viewed across age and geography , 2012, Nature.

[38]  H. Asakura HLA-Cw*1202-B*5201-DRB1*1502 haplotype increases risk for ulcerative colitis but reduces risk for Crohn's disease. , 2012, Gastroenterology.

[39]  Philip Rosenstiel,et al.  Colonic mucosa-associated microbiota is influenced by an interaction of Crohn disease and FUT2 (Secretor) genotype , 2011, Proceedings of the National Academy of Sciences.

[40]  Steven Salzberg,et al.  BIOINFORMATICS ORIGINAL PAPER , 2004 .

[41]  J. Walter,et al.  The human gut microbiome: ecology and recent evolutionary changes. , 2011, Annual review of microbiology.

[42]  Rob Knight,et al.  UCHIME improves sensitivity and speed of chimera detection , 2011, Bioinform..

[43]  R. Knight,et al.  Moving pictures of the human microbiome , 2011, Genome Biology.

[44]  P. Rosenstiel,et al.  Nod2 is essential for temporal development of intestinal microbial communities , 2011, Gut.

[45]  R. Edwards,et al.  Fast Identification and Removal of Sequence Contamination from Genomic and Metagenomic Datasets , 2011, PloS one.

[46]  Min Zhang,et al.  Individuality in gut microbiota composition is a complex polygenic trait shaped by multiple environmental and host genetic factors , 2010, Proceedings of the National Academy of Sciences.

[47]  T. Bosch,et al.  Why bacteria matter in animal development and evolution , 2010, BioEssays : news and reviews in molecular, cellular and developmental biology.

[48]  S. Mazmanian,et al.  A pathobiont of the microbiota balances host colonization and intestinal inflammation. , 2010, Cell host & microbe.

[49]  P. Bork,et al.  A human gut microbial gene catalogue established by metagenomic sequencing , 2010, Nature.

[50]  Kei Yamamoto,et al.  Group III secreted phospholipase A2 transgenic mice spontaneously develop inflammation , 2009, The Biochemical journal.

[51]  D. Wendum,et al.  Bile salts control the antimicrobial peptide cathelicidin through nuclear receptors in the human biliary epithelium. , 2009, Gastroenterology.

[52]  Hilary G. Morrison,et al.  Reproducible Community Dynamics of the Gastrointestinal Microbiota following Antibiotic Perturbation , 2009, Infection and Immunity.

[53]  M. Haussler,et al.  Vitamin D receptor: molecular signaling and actions of nutritional ligands in disease prevention. , 2008, Nutrition reviews.

[54]  U. Nöthlings,et al.  Fitting portion sizes in a self-administered food frequency questionnaire. , 2007, The Journal of nutrition.

[55]  Manuel A. R. Ferreira,et al.  PLINK: a tool set for whole-genome association and population-based linkage analyses. , 2007, American journal of human genetics.

[56]  J. Tiedje,et al.  Naïve Bayesian Classifier for Rapid Assignment of rRNA Sequences into the New Bacterial Taxonomy , 2007, Applied and Environmental Microbiology.

[57]  R. Ley,et al.  Ecological and Evolutionary Forces Shaping Microbial Diversity in the Human Intestine , 2006, Cell.

[58]  Michael Krawczak,et al.  PopGen: Population-Based Recruitment of Patients and Controls for the Analysis of Complex Genotype-Phenotype Relationships , 2006, Public Health Genomics.

[59]  E. Purdom,et al.  Diversity of the Human Intestinal Microbial Flora , 2005, Science.

[60]  F. Gonzalez,et al.  Hepatocyte Nuclear Factor 4α Is a Central Regulator of Bile Acid Conjugation* , 2004, Journal of Biological Chemistry.

[61]  E. Hermann-Kunz,et al.  The German Food Code and Nutrient Data Base (BLS II.2) , 1999, European Journal of Epidemiology.

[62]  A. Grüters,et al.  Mutations in the Human Proopiomelanocortin Gene , 2003, Annals of the New York Academy of Sciences.

[63]  M. Haussler,et al.  Vitamin D Receptor As an Intestinal Bile Acid Sensor , 2002, Science.

[64]  D. Mangelsdorf,et al.  Regulation of absorption and ABC1-mediated efflux of cholesterol by RXR heterodimers. , 2000, Science.

[65]  J. Moley,et al.  Cloning and expression analysis of a novel member of the facilitative glucose transporter family, SLC2A9 (GLUT9). , 2000, Genomics.

[66]  K. Umesono,et al.  Convergence of 9-cis retinoic acid and peroxisome proliferator signalling pathways through heterodimer formation of their receptors , 1992, Nature.