On the Relationship between k-Planar and k-Quasi Planar Graphs

A graph is k-planar \((k \ge 1)\) if it can be drawn in the plane such that no edge is crossed \(k+1\) times or more. A graph is k-quasi-planar \((k \ge 2)\) if it can be drawn in the plane with no k pairwise crossing edges. The families of k-planar and k-quasi-planar graphs have been widely studied in the literature, and several bounds have been proven on their edge density. Nonetheless, only trivial results are known about the relationship between these two graph families. In this paper we prove that, for \(k \ge 3\), every k-planar graph is \((k+1)\)-quasi-planar.

[1]  J. Pach,et al.  Thirteen problems on crossing numbers , 2000 .

[2]  A. John MINING GRAPH DATA , 2022 .

[3]  S. Griffis EDITOR , 1997, Journal of Navigation.

[4]  Gábor Tardos,et al.  On the maximum number of edges in quasi-planar graphs , 2007, J. Comb. Theory, Ser. A.

[5]  David S. Johnson,et al.  Crossing Number is NP-Complete , 1983 .

[6]  Pavel Valtr Graph Drawings with no k Pairwise Crossing Edges , 1997, Graph Drawing.

[7]  Helen C. Purchase,et al.  Effective information visualisation: a study of graph drawing aesthetics and algorithms , 2000, Interact. Comput..

[8]  János Pach,et al.  Coloring kk-free intersection graphs of geometric objects in the plane , 2008, SCG '08.

[9]  Michael A. Bekos,et al.  On the Recognition of Fan-Planar and Maximal Outer-Fan-Planar Graphs , 2014, Algorithmica.

[10]  Vasilis Capoyleas,et al.  A turán-type theorem on chords of a convex polygon , 1992, J. Comb. Theory, Ser. B.

[11]  Michael A. Bekos,et al.  On the Density of Non-simple 3-Planar Graphs , 2016, Graph Drawing.

[12]  Takeshi Tokuyama,et al.  Algoritihmcs for Beyond Planar Graphs (NII Shonan Meeting 2016-17) , 2016, NII Shonan Meet. Rep..

[13]  Michael Kaufmann,et al.  The Density of Fan-Planar Graphs , 2014, Electron. J. Comb..

[14]  Pavel Valtr,et al.  On Geometric Graphs with No k Pairwise Parallel Edges , 1997, Discret. Comput. Geom..

[15]  Walter Didimo,et al.  Graph Visualization and Data Mining , 2006 .

[16]  Weidong Huang,et al.  Effects of Sociogram Drawing Conventions and Edge Crossings in Social Network Visualization , 2007, J. Graph Algorithms Appl..

[17]  Farhad Shahrokhi,et al.  Applications of the crossing number , 1994, SCG '94.

[18]  Ioannis G. Tollis,et al.  Fan-planarity: Properties and complexity , 2014, Theor. Comput. Sci..

[19]  Lawrence B. Holder,et al.  Mining Graph Data , 2006 .

[20]  Michael A. Bekos,et al.  On Optimal 2- and 3-Planar Graphs , 2017, Symposium on Computational Geometry.

[21]  János Pach,et al.  Graphs drawn with few crossings per edge , 1996, GD.

[22]  Robert E. Tarjan,et al.  Efficient Planarity Testing , 1974, JACM.

[23]  David A. Carrington,et al.  Empirical Evaluation of Aesthetics-based Graph Layout , 2002, Empirical Software Engineering.

[24]  Bartosz Walczak,et al.  New bounds on the maximum number of edges in k-quasi-planar graphs , 2015, Comput. Geom..

[25]  Giuseppe Liotta,et al.  Graph drawing beyond planarity: some results and open problems , 2014, ICTCS.

[26]  Csaba D. Tóth,et al.  Two-Planar Graphs Are Quasiplanar , 2017, MFCS.

[27]  Michael Kaufmann,et al.  Beyond-Planar Graphs: Algorithmics and Combinatorics (Dagstuhl Seminar 16452) , 2016, Dagstuhl Reports.

[28]  Giuseppe Liotta,et al.  Right angle crossing graphs and 1-planarity , 2011, Discret. Appl. Math..

[29]  M. Schaefer The Graph Crossing Number and its Variants: A Survey , 2013 .

[30]  Michael Jünger,et al.  Crossings and Planarization , 2013, Handbook of Graph Drawing and Visualization.

[31]  Colin Ware,et al.  Cognitive Measurements of Graph Aesthetics , 2002, Inf. Vis..

[32]  Kellogg S. Booth,et al.  Testing for the Consecutive Ones Property, Interval Graphs, and Graph Planarity Using PQ-Tree Algorithms , 1976, J. Comput. Syst. Sci..

[33]  János Pach,et al.  Relaxing Planarity for Topological Graphs , 2002, JCDCG.

[34]  János Pach,et al.  Coloring kk-free intersection graphs of geometric objects in the plane , 2008, SCG '08.

[35]  Ioannis G. Tollis,et al.  Algorithms and Characterizations for 2-Layer Fan-planarity: From Caterpillar to Stegosaurus , 2017, J. Graph Algorithms Appl..

[36]  Eyal Ackerman,et al.  On the Maximum Number of Edges in Topological Graphs with no Four Pairwise Crossing Edges , 2006, SCG '06.

[37]  Ioannis G. Tollis,et al.  Fan-planarity: Properties and complexity , 2015, Theor. Comput. Sci..

[38]  Michael Jünger,et al.  Graph Drawing Software , 2003, Graph Drawing Software.

[39]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[40]  Walter Didimo,et al.  Recognizing and drawing IC-planar graphs , 2015, Theor. Comput. Sci..

[41]  János Pach,et al.  The Number of Edges in k-Quasi-planar Graphs , 2011, SIAM J. Discret. Math..

[42]  Ioannis G. Tollis,et al.  Graph Drawing , 1994, Lecture Notes in Computer Science.

[43]  Giuseppe Di Battista,et al.  Relaxing the constraints of clustered planarity , 2015, Comput. Geom..

[44]  Walter Didimo,et al.  The Crossing-Angle Resolution in Graph Drawing , 2013 .

[45]  Takeshi Tokuyama,et al.  Algorithmics for Beyond Planar Graphs , 2016 .

[46]  杉山 公造 Graph drawing and applications : for software and knowledge engineers , 2002 .

[47]  Otfried Cheong,et al.  On the Number of Edges of Fan-Crossing Free Graphs , 2013, Algorithmica.

[48]  János Pach,et al.  Improving the Crossing Lemma by Finding More Crossings in Sparse Graphs , 2006, Discret. Comput. Geom..

[49]  Roberto Tamassia,et al.  Handbook on Graph Drawing and Visualization , 2013 .

[50]  Micha Sharir,et al.  Quasi-planar graphs have a linear number of edges , 1995, GD.