Primary structure of the hemoglobins from Sphenodon (Sphenodon punctatus, Tuatara, Rynchocephalia). Evidence for the expression of alpha D-gene.

Sphenodon is the sole representative of the "beakhead" reptiles which were widely distributed during the Triassic period before the spectacular rise of dinosaurs. Sphenodon punctatus is the only survivor ("living fossil") of this period. The morphological features of Sphenodon are remarkably conservative and differ little from reptiles living 200 million years ago. In the present paper the determination of the primary structure of the tetrameric hemoglobins is described: three components are identified: hemoglobin A' (alpha A2 beta II2), hemoglobin A (alpha A2 beta I2) and hemoglobin D (alpha D2 beta II2). The components were characterized electrophoretically, the four different peptide chains were characterized by Triton electrophoresis as well as by high-performance liquid chromatography. The hemoglobins and--under dissociating conditions--also the chains, were isolated on columns of cellulose ion exchangers. Sequence determination was carried out after cleavage of the individual chains with trypsin and after a specific chemical cleavage of the Asp-Pro bond. For sequence determination the film technique and gas-phase method were employed. The data are compared with the sequence of the human hemoglobin, and interpretations of the amino-acid sequences are given. Particularly notable is the evidence of hemoglobin D: this hemoglobin (alpha D2 beta II2) is found only in birds, and in two cases in turtles. However, this component is not found in other reptiles. The results make possible an interpretation of the relatively high oxygen affinity and explain the lack of cooperativity (myoglobin properties) of these tetrameric hemoglobins.

[1]  G. Braunitzer,et al.  The primary structure of the hemoglobin of the Rock-Hopper penguin (Eudyptes crestatus, Sphenisciformes). , 1988, Biological chemistry Hoppe-Seyler.

[2]  G. Braunitzer,et al.  High-altitude respiration of birds. The primary structures of the alpha D-chains of the Bar-headed Goose (Anser indicus), the Greylag Goose(Anser anser) and the Canada Goose (Branta canadensis). , 1986, Biological chemistry Hoppe-Seyler.

[3]  J. Godovac-Zimmermann,et al.  The expression of alpha D-chains in the hemoglobin of adult ostrich (Struthio camelus) and American rhea (Rhea americana). The different evolution of adult bird alpha A-, alpha D- and beta-chains. , 1986, Biological Chemistry Hoppe-Seyler.

[4]  G. Braunitzer,et al.  Das Hämoglobin des adulten Andenkondors (Vultur gryphus, Cathartiformes) , 1985 .

[5]  G. Braunitzer,et al.  [Hemoglobins of reptiles. Expression of alpha-D-genes in the turtles, Chrysemys picta bellii and Phrynops hilarii (Testudines)]. , 1984, Hoppe-Seyler's Zeitschrift fur physiologische Chemie.

[6]  G. Braunitzer,et al.  Direkte Reziproke Allosterische Wechsehvirkung von Sauerstoff und Hydrogencarbonat: Die Sequenz Der Hämoglobine von Kaiman (Caiman Crocodylus), Nil-Krokodil (Crocodylus Niloticus) und Mississippi-Krokodil (Alligator Mississippiensis) , 1981 .

[7]  B. Alter,et al.  Globin Chain Electrophoresis: a New Approach to the Determination of the Gγ/Aγ Ratio in Fetal Haemoglobin and to Studies of Globin Synthesis , 1980 .

[8]  N. Hilschmann,et al.  Präparative Auftrennung des tryptischen Hydrolysats eines Proteins mit Hilfe der Hochdruck-Flüssigkeitschromatographie. Die Primärstruktur einer monoklonalen L-Kette vom K-Typ, Subgruppe I (Bence-Jones-Protein Wes) , 1980 .

[9]  G. Braunitzer,et al.  Kovalente, C-terminale Hydrophilisierung von Bromcyanpeptiden mit Arginin im Sequenator , 1980 .

[10]  C. Gans On exhibiting reptiles , 1979 .

[11]  G. Maloiy,et al.  Temperature acclimation in the pancake tortoise, Malacochersus tornieri: Metabolic rate, blood pH, oxygen affinity and red cell organic phosphates , 1978 .