A computational method for the inverse transmission eigenvalue problem

In this work, we consider the inverse transmission eigenvalue problem to determine the refractive index from transmission eigenvalues. We adopt a weak formulation of the problem and provide a Galerkin scheme in to compute transmission eigenvalues. Using a proper operator representation of the problem, we show convergence of the method. Next, we define the inverse transmission problem and show that numerically the problem can be considered as a discrete inverse quadratic eigenvalue problem. First, we investigate the case of a spherically symmetric piecewise constant refractive index and confirm our results with analytic computations. Then, we show that a relative small number of eigenvalues are sufficient for simple cases of a few layers by just minimizing the total error between measured and computed eigenvalues to reconstruct the refractive index. Finally, we propose a computational method based on a Newton-type algorithm for reconstructions of a general piecewise constant refractive index for any domain from transmission eigenvalues. The algorithm can be performed without having knowledge of the exact position of the eigenvalues in the spectrum.

[1]  Bryan P. Rynne,et al.  The interior transmission problem and inverse scattering from inhomogeneous media , 1991 .

[2]  H. Haddar,et al.  On the existence of transmission eigenvalues in an inhomogeneous medium , 2009 .

[3]  D. Colton,et al.  Transmission eigenvalues and the nondestructive testing of dielectrics , 2008 .

[4]  A. Kirsch On the existence of transmission eigenvalues , 2009 .

[5]  Fioralba Cakoni,et al.  The Interior Transmission Eigenvalue Problem , 2010, SIAM J. Math. Anal..

[6]  Joyce R. McLaughlin,et al.  On the Uniqueness of a Spherically Symmetric Speed of Sound from Transmission Eigenvalues , 1994 .

[7]  Karl Meerbergen,et al.  The Quadratic Eigenvalue Problem , 2001, SIAM Rev..

[9]  Fioralba Cakoni,et al.  On the determination of Dirichlet or transmission eigenvalues from far field data , 2010 .

[10]  H. Haddar,et al.  Transmission Eigenvalues in Inverse Scattering Theory , 2012 .

[11]  Fioralba Cakoni,et al.  The Existence of an Infinite Discrete Set of Transmission Eigenvalues , 2010, SIAM J. Math. Anal..

[12]  D. Colton,et al.  THE INVERSE SCATTERING PROBLEM FOR TIME-HARMONIC ACOUSTIC WAVES IN AN INHOMOGENEOUS MEDIUM , 1988 .

[13]  J. Rappaz,et al.  On spectral approximation. Part 1. The problem of convergence , 1978 .

[14]  Guy Chavent,et al.  Inverse Problems in Wave Propagation , 1997 .

[15]  D. Colton,et al.  The computation of lower bounds for the norm of the index of refraction in an anisotropic media from far field data , 2009 .

[16]  D. Colton,et al.  Analytical and computational methods for transmission eigenvalues , 2010 .

[17]  C. Fox Variational Methods for Eigenvalue Problems. By S. H. Gould. Pp. xiv, 179. 48s. 1957. (University of Toronto Press and Oxford University Press) , 1959, The Mathematical Gazette.

[18]  Viktor S. Ryaben’kii Difference potentials analogous to Cauchy integrals , 2012 .

[19]  Fioralba Cakoni,et al.  New results on transmission eigenvalues , 2010 .

[20]  Peter Monk,et al.  On the use of transmission eigenvalues to estimate the index of refraction from far field data , 2007 .

[21]  D. Colton,et al.  The interior transmission problem , 2007 .

[22]  Jiguang Sun Iterative Methods for Transmission Eigenvalues , 2011, SIAM J. Numer. Anal..

[23]  Tuncay Aktosun,et al.  The uniqueness in the inverse problem for transmission eigenvalues for the spherically symmetric variable-speed wave equation , 2011, 1106.2843.

[24]  Joyce R. McLaughlin,et al.  Reconstruction of a Spherically Symmetric Speed of Sound , 1994, SIAM J. Appl. Math..

[25]  Sylvan Elhay,et al.  An affine inverse eigenvalue problem , 2002 .

[26]  D. Colton,et al.  The inverse electromagnetic scattering problem for anisotropic media , 2010 .

[27]  J. McLaughlin,et al.  Inverse Scattering in Acoustic Media Using Interior Transmission Eigenvalues , 1997 .

[28]  Xia Ji,et al.  Algorithm 922: A Mixed Finite Element Method for Helmholtz Transmission Eigenvalues , 2012, TOMS.

[29]  Michel L. Lapidus,et al.  Riemann zeros and phase transitions via the spectral operator on fractal strings , 2012, 1203.4828.

[30]  Jiguang Sun,et al.  Estimation of transmission eigenvalues and the index of refraction from Cauchy data , 2010 .

[31]  David Colton,et al.  Complex transmission eigenvalues for spherically stratified media , 2012 .