Sea of polymer pillars electrical and optical chip I/O interconnections for gigascale integration

Optical chip-to-chip communication is a promising technology that can mitigate some of the performance short-comings of electrical interconnections, especially bandwidth. Moreover, future high-performance chips are projected to drain hundreds of amperes of supply current. To this end, it is important to develop a high-density and high-performance integrated electrical and optical chip I/O interconnection technology. We describe sea of polymer pillars (or polymer pins), which enables the simultaneous batch fabrication of electrical and optical I/O interconnections at the wafer-level. The electrical and optical I/O interconnections are designed to be laterally compliant to minimize the stresses on the die's low-k dielectric as well as to maintain optical alignment between the coefficient of thermal expansion (CTE)-mismatched board and die during thermal cycling. We demonstrate the fabrication and mechanical performance of various size and aspect ratio electrical and optical polymer pillars. We also describe methods of fabricating polymer pillars with nonflat tip surface area for optical interconnection.

[1]  P. Benabes,et al.  Optoelectronic interconnection technology in the HOLMS system , 2003 .

[2]  T. Gaylord,et al.  Chip-to-Module Interconnections Using "Sea of Leads" Technology , 2003 .

[3]  Suning Tang,et al.  Compression-molded three-dimensional tapered polymeric waveguides for low-loss optoelectronic packaging , 1997, Other Conferences.

[4]  H. Takahara,et al.  Optoelectronic multichip module packaging technologies and optical input/output interface chip-level packages for the next generation of hardware systems , 2003 .

[5]  E. Griese A high-performance hybrid electrical-optical interconnection technology for high-speed electronic systems , 2001 .

[6]  L. L. Mercado,et al.  Impact of flip-chip packaging on copper/low-k structures , 2003 .

[7]  Yasuhiro Ando,et al.  SMT-compatible large-tolerance "OptoBump" interface for interchip optical interconnections , 2003 .

[8]  Andreas Neyer,et al.  Integration of polymer optical waveguides into printed circuit boards , 2000 .

[9]  Muhannad S. Bakir,et al.  Sea of Leads (SoL) ultrahigh density wafer-level chip input/output interconnections for gigascale integration (GSI) , 2003 .

[10]  Ray T. Chen,et al.  Fully embedded board-level guided-wave optoelectronic interconnects , 2000, Proceedings of the IEEE.

[11]  Muhannad S. Bakir,et al.  Sea of polymer pillars: dual-mode electrical-optical Input/Output interconnections , 2003, Proceedings of the IEEE 2003 International Interconnect Technology Conference (Cat. No.03TH8695).

[12]  J.D. Meindl,et al.  Sea of dual mode polymer pillar I/O interconnections for gigascale integration , 2003, 2003 IEEE International Solid-State Circuits Conference, 2003. Digest of Technical Papers. ISSCC..

[13]  J.D. Meindl,et al.  Sea of polymer pillars: compliant wafer-level electrical-optical chip I/O interconnections , 2003, IEEE Photonics Technology Letters.

[14]  R. Augur,et al.  Packaging assessment of porous ultra low-k materials , 2002, Proceedings of the IEEE 2002 International Interconnect Technology Conference (Cat. No.02EX519).

[15]  T K Gaylord,et al.  Design, fabrication, and performance of preferential-order volume grating waveguide couplers. , 2000, Applied optics.

[16]  T. Gaylord,et al.  Optical transmission of polymer pillars for chip I/O optical interconnections , 2004, IEEE Photonics Technology Letters.

[17]  Larry R. Dalton,et al.  Three Dimensional Integrated Optics Using Polymers , 1999, Organic Thin Films for Photonics Applications.

[18]  F.J. Leonberger,et al.  Optical interconnections for VLSI systems , 1984, Proceedings of the IEEE.

[19]  D.A.B. Miller,et al.  Rationale and challenges for optical interconnects to electronic chips , 2000, Proceedings of the IEEE.

[20]  Chi On Chui,et al.  Integration of optical polymer pillars chip I/O interconnections with Si MSM photodetectors , 2004, IEEE Transactions on Electron Devices.

[21]  G. D. Boyd,et al.  Directional reactive ion etching at oblique angles , 1980 .

[22]  Predrag Milojkovic,et al.  Design of a 160 Gbps free-space optical interconnection fabric for fully connected multi-chip applications , 2002, The 15th Annual Meeting of the IEEE Lasers and Electro-Optics Society.

[23]  E. Griese,et al.  3-Gb/s data transmission with GaAs VCSELs over PCB integrated polymer waveguides , 2001, IEEE Photonics Technology Letters.

[24]  Payman Zarkesh-Ha,et al.  Interconnect opportunities for gigascale integration , 2002, IBM J. Res. Dev..

[25]  David V. Plant,et al.  Design rules for highly parallel free-Space optical interconnects , 2003 .

[26]  Ray T. Chen,et al.  45‐cm long compression‐molded polymer‐based optical bus , 1993 .

[27]  Christof Debaes,et al.  Low-cost microoptical modules for MCM level optical interconnections , 2003 .