NH3 sensing with self-assembled ZnO-nanowire μHP sensors in isothermal and temperature-pulsed mode

Abstract Dielectrophoretic alignment is found to be a simple and efficient method to deposit the solution prepared ZnO nanowires onto micro hot plate substrates. Due to the strong surface effects, positive temperature coefficient for resistance was encountered with ZnO nanowires in the high temperature range (>250 °C). The response to ammonia (NH3) was evaluated in isothermal and temperature-pulsed operation mode; the relative higher response observed in the latter case demonstrates that the use of this methodology is a good strategy to improve the performance of metal oxide sensors based on nanomaterials. Here, we evaluate the response to NH3 and qualitatively describe the sensing mechanism in temperature-pulsed mode, highlighting the main differences compared to the standard isothermal methodology.

[1]  Ion Tiginyanu,et al.  Selective hydrogen gas nanosensor using individual ZnO nanowire with fast response at room temperature , 2010 .

[2]  Sheikh A. Akbar,et al.  Comparison of gas sensor performance of SnO2 nano-structures on microhotplate platforms , 2012 .

[3]  Xiangfeng Duan,et al.  High-yield self-limiting single-nanowire assembly with dielectrophoresis. , 2010, Nature nanotechnology.

[4]  Wang Shengwei,et al.  PTCR effects in Sr-doped KNbO3 ferroelectric ceramic materials , 2014 .

[5]  Y. Shimizu,et al.  Desorption behavior of ammonia from TiO2-based specimens — ammonia sensing mechanism of double-layer sensors with TiO2-based catalyst layers , 2000 .

[6]  Udo Weimar,et al.  Gas identification by modulating temperatures of SnO2-based thick film sensors , 1997 .

[7]  Jürgen Wöllenstein,et al.  Micromachined thin film SnO2 gas sensors in temperature-pulsed operation mode , 1999 .

[8]  Hui Shen,et al.  Positive temperature coefficient of resistance of single ZnO nanorods , 2011, Nanotechnology.

[9]  Jian Zhang,et al.  Dielectrophoretic manipulation of nano-materials and its application to micro/nano-sensors , 2008 .

[10]  C. Li,et al.  Surface Treatment and Doping Dependence of In2O3 Nanowires as Ammonia Sensors , 2003 .

[11]  F. Udrea,et al.  SQI-CMOS based single crystal silicon micro-heaters for gas sensors , 2006, 2006 5th IEEE Conference on Sensors.

[12]  S. Christiansen,et al.  Applying contact to individual silicon nanowires using a dielectrophoresis (DEP)-based technique , 2013, Journal of Nanoparticle Research.

[13]  G. Neri,et al.  In2O3 and Pt-In2O3 nanopowders for low temperature oxygen sensors , 2007 .

[14]  Yo-Sep Min,et al.  Properties and sensor performance of zinc oxide thin films , 2003 .

[15]  A. Cornet,et al.  Microdeposition of microwave obtained nanoscaled SnO2 powders for gas sensing microsystems , 2002 .

[16]  Xuejun Zheng,et al.  Improved NH3, C2H5OH, and CH3COCH3 sensing properties of SnO2 nanofibers by adding block copolymer P123 , 2009 .

[17]  Carles Cané,et al.  Pulverisation method for active layer coating on microsystems , 2002 .

[18]  Yicheng Lu,et al.  ZnO Schottky barriers and Ohmic contacts , 2011 .

[19]  Daniel Hofstetter,et al.  ZnO Devices and Applications: A Review of Current Status and Future Prospects , 2010, Proceedings of the IEEE.

[20]  B. Reedy,et al.  Temperature modulation in semiconductor gas sensing , 1999 .

[21]  R. Osiander,et al.  Wafer-level assembly of carbon nanotube networks using dielectrophoresis , 2008, Nanotechnology.

[22]  Florin Udrea,et al.  ZnO nanowires grown on SOI CMOS substrate for ethanol sensing , 2010 .

[23]  Yu Lei,et al.  Highly sensitive H2S sensor based on template-synthesized CuO nanowires , 2012 .

[24]  H. Baltes,et al.  CMOS MEMS , 1997, Proceedings of 1997 IEEE International Symposium on Circuits and Systems. Circuits and Systems in the Information Age ISCAS '97.

[25]  P. Chaparala,et al.  Fast temperature programmed sensing for micro-hotplate gas sensors , 1995, IEEE Electron Device Letters.

[26]  Localized growth and in situ integration of nanowires for device applications. , 2012, Chemical communications.

[27]  R. Gutierrez-Osuna,et al.  Active temperature modulation of metal-oxide sensors for quantitative analysis of gas mixtures , 2013 .

[28]  Kurt D. Benkstein,et al.  The potential for and challenges of detecting chemical hazards with temperature-programmed microsensors , 2007 .

[29]  A. Hierlemann,et al.  A Smart Single-Chip Micro-Hotplate-Based Gas Sensor System in CMOS-Technology , 2004 .

[30]  Andrey Shchukarev,et al.  Inkjet-printed gas sensors : metal decorated WO3 nanoparticles and their gas sensing properties , 2012 .

[31]  Yan Hao,et al.  Cobalt(II/III) redox electrolyte in ZnO nanowire-based dye-sensitized solar cells. , 2013, ACS applied materials & interfaces.

[32]  M. Drofenik,et al.  Composite ceramics with a positive temperature coefficient of electrical resistivity effect , 2000 .

[33]  Zhiyong Fan,et al.  Gate-refreshable nanowire chemical sensors , 2005 .

[34]  M. Gillan,et al.  First-principles study of the interaction of oxygen with the SnO2(110) surface , 2001 .

[35]  T. Doll,et al.  A rate equation approach to the gas sensitivity of thin film metal oxide materials , 2005 .

[36]  Udo Weimar,et al.  STRATEGIES TO AVOID VOC CROSS-SENSITIVITY OF SNO2-BASED CO SENSORS , 1999 .

[37]  C. Park,et al.  V2O5 nanowire-based nanoelectronic devices for helium detection , 2005 .

[38]  Núria López,et al.  Interaction Mechanisms of Ammonia and Tin Oxide: A Combined Analysis Using Single Nanowire Devices and DFT Calculations , 2013 .

[39]  Carles Cané,et al.  Screen-printed nanoparticle tin oxide films for high-yield sensor microsystems , 2003 .

[40]  N. Bârsan,et al.  Conduction Model of Metal Oxide Gas Sensors , 2001 .

[41]  Carles Cané,et al.  A novel single chip thin film metal oxide array , 2003 .

[42]  Zhong Lin Wang,et al.  ZnO nanobelt/nanowire Schottky diodes formed by dielectrophoresis alignment across au electrodes. , 2006, Nano letters.

[43]  V. Pathirana,et al.  Experimental, analytical and numerical investigation of non-linearity of SOI diode temperature sensors at extreme temperatures , 2015 .

[44]  Jürgen Wöllenstein,et al.  Gas response of reactively sputtered ZnO films on Si-based micro-array , 2003 .

[45]  Cheng Liang Hsu,et al.  High sensitivity of a ZnO nanowire-based ammonia gas sensor with Pt nano-particles , 2010, Nano Commun. Networks.

[46]  J. Suehle,et al.  Microhotplate Platforms for Chemical Sensor Research , 2001 .

[47]  Joan Ramon Morante,et al.  NH3 interaction with catalytically modified nano-WO3 powders for gas sensing applications , 2003 .

[48]  Jürgen Wöllenstein,et al.  Micromechanical fabrication of robust low-power metal oxide gas sensors , 2003 .

[49]  D. L. Lahr,et al.  Inducing analytical orthogonality in tungsten oxide-based microsensors using materials structure and dynamic temperature control , 2009 .

[50]  A. Schutze,et al.  Increasing the Selectivity of Pt-Gate SiC Field Effect Gas Sensors by Dynamic Temperature Modulation , 2010, IEEE Sensors Journal.

[51]  Florin Udrea,et al.  Post-CMOS wafer level growth of carbon nanotubes for low-cost microsensors—a proof of concept , 2010, Nanotechnology.

[52]  X. Illa,et al.  Analyses of the ammonia response of integrated gas sensors working in pulsed mode , 2006 .

[53]  Jian Jia,et al.  Porous CuO/SnO2 composite nanofibers fabricated by electrospinning and their H2S sensing properties , 2012 .

[54]  S Mathur,et al.  Water vapor detection with individual tin oxide nanowires , 2007, Nanotechnology.

[55]  Carles Cané,et al.  Sensitivity and selectivity improvement of rf sputtered WO3 microhotplate gas sensors , 2006 .

[56]  F. Udrea,et al.  Tungsten-Based SOI Microhotplates for Smart Gas Sensors , 2008, Journal of Microelectromechanical Systems.

[57]  T. Dmitrieva,et al.  Magnetic, structural, and electronic properties of iron sulfide Fe3S4 nanoparticles synthesized by the polyol mediated process , 2013, Journal of Nanoparticle Research.

[58]  C. N. R. Rao,et al.  Ammonia sensors based on metal oxide nanostructures , 2007 .

[59]  Hongwei Sun,et al.  Fabrication and integration of metal oxide nanowire sensors using dielectrophoretic assembly and improved post-assembly processing , 2010 .

[60]  D. Eastman,et al.  PHOTOELECTRIC WORK FUNCTIONS OF TRANSITION, RARE-EARTH, AND NOBLE METALS. , 1970 .

[61]  A. W. Maijenburg,et al.  Dielectrophoretic alignment of metal and metal oxide nanowires and nanotubes: a universal set of parameters for bridging prepatterned microelectrodes. , 2011, Journal of colloid and interface science.

[62]  Hui Liu,et al.  Dielectrophoretic assembly and integration of nanowire devices with functional CMOS operating circuitry , 2004 .

[63]  Mei-hua Zhou,et al.  Different morphologies of ZnO and their ethanol sensing property , 2014 .

[64]  Kyung Soo Park,et al.  On-chip fabrication of ZnO-nanowire gas sensor with high gas sensitivity , 2009 .

[65]  Sanjay Mathur,et al.  Electrical properties of individual tin oxide nanowires contacted to platinum electrodes , 2007 .

[66]  Hongwei Sun,et al.  Tin–copper mixed metal oxide nanowires: Synthesis and sensor response to chemical vapors , 2011 .