Soft material for soft actuators

Inspired by natural muscle, a key challenge in soft robotics is to develop self-contained electrically driven soft actuators with high strain density. Various characteristics of existing technologies, such as the high voltages required to trigger electroactive polymers ( > 1KV), low strain ( < 10%) of shape memory alloys and the need for external compressors and pressure-regulating components for hydraulic or pneumatic fluidicelastomer actuators, limit their practicality for untethered applications. Here we show a single self-contained soft robust composite material that combines the elastic properties of a polymeric matrix and the extreme volume change accompanying liquid–vapor transition. The material combines a high strain (up to 900%) and correspondingly high stress (up to 1.3 MPa) with low density (0.84 g cm−3). Along with its extremely low cost (about 3 cent per gram), simplicity of fabrication and environment-friendliness, these properties could enable new kinds of electrically driven entirely soft robots.The development of self-contained electrically driven soft actuators with high strain density is difficult. Here the authors show a single self-contained soft robust composite material that combines the elastic properties of a polymeric matrix and the extreme volume change accompanying liquid vapour transition.

[1]  John B. Shoven,et al.  I , Edinburgh Medical and Surgical Journal.

[2]  Robert C. Wolpert,et al.  A Review of the , 1985 .

[3]  Blake Hannaford,et al.  Measurement and modeling of McKibben pneumatic artificial muscles , 1996, IEEE Trans. Robotics Autom..

[4]  Michael F. Ashby,et al.  The selection of mechanical actuators based on performance indices , 1997, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[5]  Jordan B. Pollack,et al.  Automatic design and manufacture of robotic lifeforms , 2000, Nature.

[6]  S. Konishi,et al.  Thin flexible end-effector using pneumatic balloon actuator , 2000 .

[7]  K. Kim,et al.  Ionic polymer-metal composites: I. Fundamentals , 2001 .

[8]  K. Kim,et al.  A novel method of manufacturing three-dimensional ionic polymer–metal composites (IPMCs) biomimetic sensors, actuators and artificial muscles , 2002 .

[9]  Carlos H. Mastrangelo,et al.  Electrothermally activated paraffin microactuators , 2002 .

[10]  Yoseph Bar-Cohen,et al.  EAP as artificial muscles: progress and challenges , 2004, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[11]  J. Madden,et al.  Polymer artificial muscles , 2007 .

[12]  P. McHugh,et al.  A review on dielectric elastomer actuators, technology, applications, and challenges , 2008 .

[13]  D. Ratna,et al.  Recent advances in shape memory polymers and composites: a review , 2008 .

[14]  Ian D. Walker,et al.  Soft robotics: Biological inspiration, state of the art, and future research , 2008 .

[15]  Paolo Dario,et al.  A new design methodology of electrostrictive actuators for bio-inspired robotics , 2009 .

[16]  Alain Delchambre,et al.  Towards flexible medical instruments: Review of flexible fluidic actuators , 2009 .

[17]  David Bradley,et al.  Gen F Scientists , 2010 .

[18]  Reinhard Schwödiauer,et al.  Large area expansion of a soft dielectric membrane triggered by a liquid gaseous phase change , 2011 .

[19]  Filip Ilievski,et al.  Multigait soft robot , 2011, Proceedings of the National Academy of Sciences.

[20]  Stephen A. Morin,et al.  Camouflage and Display for Soft Machines , 2012, Science.

[21]  Paolo Dario,et al.  Soft Robot Arm Inspired by the Octopus , 2012, Adv. Robotics.

[22]  Robert Langer,et al.  Bio-Inspired Polymer Composite Actuator and Generator Driven by Water Gradients , 2013, Science.

[23]  Federico Carpi,et al.  Effects of plasticization of a soft silicone for dielectric elastomer actuation , 2013 .

[24]  Barry Trimmer,et al.  Soft robots , 2013, Current Biology.

[25]  J-S Plante,et al.  Experimental Study of Dielectric Elastomer Actuator Energy Conversion Efficiency , 2013, IEEE/ASME Transactions on Mechatronics.

[26]  Cecilia Laschi,et al.  Soft robotics: a bioinspired evolution in robotics. , 2013, Trends in biotechnology.

[27]  Yi Sun,et al.  Characterization of silicone rubber based soft pneumatic actuators , 2013, 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[28]  Klas Hjort,et al.  Review on miniaturized paraffin phase change actuators, valves, and pumps , 2014 .

[29]  Robert J. Wood,et al.  A Resilient, Untethered Soft Robot , 2014 .

[30]  Qiang Zhao,et al.  An instant multi-responsive porous polymer actuator driven by solvent molecule sorption , 2014, Nature Communications.

[31]  Matteo Cianchetti,et al.  Soft Robotics: New Perspectives for Robot Bodyware and Control , 2014, Front. Bioeng. Biotechnol..

[32]  Daniela Rus,et al.  A Recipe for Soft Fluidic Elastomer Robots , 2015, Soft robotics.

[33]  D. Rus,et al.  Design, fabrication and control of soft robots , 2015, Nature.

[34]  Robert J. Wood,et al.  Soft robotic glove for combined assistance and at-home rehabilitation , 2015, Robotics Auton. Syst..

[35]  Robert J. Wood,et al.  A 3D-printed, functionally graded soft robot powered by combustion , 2015, Science.

[36]  Qingwei Li,et al.  A large-deformation phase transition electrothermal actuator based on carbon nanotube-elastomer composites. , 2016, Journal of materials chemistry. B.

[37]  Marko B. Popovic,et al.  Hydro Muscle -a novel soft fluidic actuator , 2016, 2016 IEEE International Conference on Robotics and Automation (ICRA).

[38]  Hod Lipson,et al.  Electrically Actuated Hydraulic Solids   , 2016 .

[39]  K. Kar,et al.  Ionic Polymer Metal Composites , 2017 .

[40]  A. Ares Shape-Memory Materials , 2018 .