Variational Harmonic Method for Parameterization of Computational Domain in 2D Isogeometric Analysis

In is geometric anlaysis, parameterization of computational domain has great effects as mesh generation in finite element analysis. In this paper, based on the concept of harmonic map from the computational domain to parametric domain, a variational approach is proposed to construct the parameterization of computational domain for 2D is geometric analysis. Different from the previous elliptic mesh generation method in finite element analysis, the proposed method focus on is geometric version, and converts the elliptic PDE into a nonlinear optimization problem. A regular term is integrated into the optimization formulation to achieve more uniform grid near convex(concave) parts of the boundary. Several examples are presented to show the efficiency of the proposed method.

[1]  T. Hughes,et al.  ISOGEOMETRIC ANALYSIS: APPROXIMATION, STABILITY AND ERROR ESTIMATES FOR h-REFINED MESHES , 2006 .

[2]  Alessandro Reali,et al.  Studies of Refinement and Continuity in Isogeometric Structural Analysis (Preprint) , 2007 .

[3]  Thomas J. R. Hughes,et al.  n-Widths, sup–infs, and optimality ratios for the k-version of the isogeometric finite element method , 2009 .

[4]  T. Hughes,et al.  Isogeometric analysis of the Cahn–Hilliard phase-field model , 2008 .

[5]  B. Simeon,et al.  Adaptive isogeometric analysis by local h-refinement with T-splines , 2010 .

[6]  T. Hughes,et al.  B¯ and F¯ projection methods for nearly incompressible linear and non-linear elasticity and plasticity using higher-order NURBS elements , 2008 .

[7]  Elaine Cohen,et al.  Volumetric parameterization and trivariate B-spline fitting using harmonic functions , 2009, Comput. Aided Geom. Des..

[8]  T. Hughes,et al.  Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .

[9]  T. Hughes,et al.  Isogeometric Fluid–structure Interaction Analysis with Applications to Arterial Blood Flow , 2006 .

[10]  Régis Duvigneau,et al.  Parameterization of computational domain in isogeometric analysis: Methods and comparison , 2011 .

[11]  Martin Aigner,et al.  Swept Volume Parameterization for Isogeometric Analysis , 2009, IMA Conference on the Mathematics of Surfaces.

[12]  H. Nguyen-Xuan,et al.  Isogeometric analysis using polynomial splines over hierarchical T-meshes for two-dimensional elastic solids , 2011 .

[13]  Philipp Lamby,et al.  Application of B-spline techniques to the modeling of airplane wings and numerical grid generation , 2008, Comput. Aided Geom. Des..

[14]  Gerald E. Farin,et al.  Discrete Coons patches , 1999, Comput. Aided Geom. Des..

[15]  Philip E. Gill,et al.  Practical optimization , 1981 .

[16]  G. Sangalli,et al.  A fully ''locking-free'' isogeometric approach for plane linear elasticity problems: A stream function formulation , 2007 .

[17]  Tom Lyche,et al.  Analysis-aware modeling: Understanding quality considerations in modeling for isogeometric analysis , 2010 .

[18]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[19]  Alessandro Reali,et al.  Isogeometric Analysis of Structural Vibrations , 2006 .

[20]  G. Sangalli,et al.  IsoGeometric Analysis using T-splines , 2012 .

[21]  Régis Duvigneau,et al.  An Introduction to Isogeometric Analysis with Application to Thermal Conduction , 2009 .

[22]  Alessandro Reali,et al.  Duality and unified analysis of discrete approximations in structural dynamics and wave propagation : Comparison of p-method finite elements with k-method NURBS , 2008 .

[23]  Bernd Hamann,et al.  Iso‐geometric Finite Element Analysis Based on Catmull‐Clark : ubdivision Solids , 2010, Comput. Graph. Forum.

[24]  T. Hughes,et al.  Isogeometric fluid-structure interaction: theory, algorithms, and computations , 2008 .

[25]  John A. Evans,et al.  Isogeometric analysis using T-splines , 2010 .

[26]  Régis Duvigneau,et al.  Optimal analysis-aware parameterization of computational domain in 3D isogeometric analysis , 2010, Comput. Aided Des..