The Next Generation of Cosmological Measurements with Type Ia Supernovae

While Type Ia Supernovae (SNe Ia) are one of the most mature cosmological probes, the next era promises to be extremely exciting in the number of different ways SNe Ia are used to measure various cosmological parameters. Here we review the experiments in the 2020s that will yield orders of magnitudes more SNe Ia, and the new understandings and capabilities to constrain systematic uncertainties at a level to match these statistics. We then discuss five different cosmological probes with SNe Ia: the conventional Hubble diagram for measuring dark energy properties, the distance ladder for measuring the Hubble constant, peculiar velocities and weak lensing for measuring sigma8 and strong-lens measurements of H0 and other cosmological parameters. For each of these probes, we discuss the experiments that will provide the best measurements and also the SN Ia-related systematics that affect each one.

Armin Rest | Gautham Narayan | Anthony Challinor | Ningfeng Zhu | Srivatsan Sridhar | Christopher Stubbs | David O. Jones | Asantha Cooray | Saurabh Jha | Feng Shi | Saul Perlmutter | Gong-Bo Zhao | Jean-Paul Kneib | Aritoki Suzuki | Lyman Page | Giuseppe Puglisi | Mickael Rigault | Cora Dvorkin | Levon Pogosian | Nicolas Regnault | Arturo Avelino | Ryan E. Keeley | Suhail Dhawan | Georgios Dimitriadis | Masao Sako | Renee Hlozek | Massimiliano Lattanzi | Greg Aldering | Andrei Nomerotski | Yannick Copin | Marco Raveri | Peter J. Brown | W. M. Wood-Vasey | Adam Riess | Ryan Foley | Christophe Balland | Tamara Davis | Jacobo Asorey | Suvodip Mukherjee | Kaisey Mandel | J. Kneib | P. Brown | W. Wood-Vasey | Gong-Bo Zhao | A. Challinor | L. Page | A. Riess | S. Rodney | S. Jha | A. Suzuki | R. Kessler | M. Sako | D. Brout | C. Stubbs | S. Mukherjee | D. Scolnic | A. Rest | R. Foley | R. Hložek | R. Hounsell | T. Davis | A. Kim | D. Rubin | C. Rojas-Bravo | G. Narayan | G. Aldering | Y. Copin | J. Guy | S. Perlmutter | M. Rigault | A. Filippenko | K. Mandel | S. Dhawan | Yun Wang | N. Regnault | J. Asorey | C. Balland | Benjamin L'Huillier | A. Nomerotski | M. Lattanzi | P. Kelly | G. Dimitriadis | G. Puglisi | A. Cooray | Yuhsin Tsai | W. Handley | N. Zhu | C. Dvorkin | L. Pogosian | M. Raveri | P. Motloch | Julien Guy | Yun Wang | David Rubin | Will Handley | Pavel Motloch | Yu-Dai Tsai | Srivatsan Sridhar | Dan Scolnic | Dillon Brout | Alex Filippenko | Rebekah Hounsell | David Jones | Pat Kelly | Rick Kessler | Alex Kim | Steven Rodney | Justin Roberts-Pierel | Chetan Bavdhankar | Benjamin LHuillier | James Mertens | Cesar Rojas-Bravo | J. Roberts-Pierel | A. Avelino | F. Shi | J. Mertens | Chetan Bavdhankar | G. Zhao | P. Brown | R. Keeley | A. Filippenko

[1]  A. Kim,et al.  Measuring the Growth Rate of Structure with Type IA Supernovae from LSST , 2017, 1708.08236.

[2]  Edward J. Wollack,et al.  Wide-Field InfrarRed Survey Telescope-Astrophysics Focused Telescope Assets WFIRST-AFTA 2015 Report , 2015, 1503.03757.

[3]  C. Tao,et al.  Strong dependence of Type Ia supernova standardization on the local specific star formation rate , 2018, Astronomy & Astrophysics.

[4]  Gravitational lensing of Type Ia supernovae , 1999, astro-ph/9912195.

[5]  Armin Rest,et al.  The Foundation Supernova Survey Motivation, design, implementation, and first data release , 2017, 1711.02474.

[6]  David O. Jones,et al.  Type Ia Supernova Distances at Redshift >1.5 from the Hubble Space Telescope Multi-cycle Treasury Programs: The Early Expansion Rate , 2017, 1710.00844.

[7]  W. Wood-Vasey,et al.  CfA4: LIGHT CURVES FOR 94 TYPE Ia SUPERNOVAE , 2012, 1205.4493.

[8]  D. Scolnic,et al.  Testing ΛCDM at the lowest redshifts with SN Ia and galaxy velocities , 2016, 1611.09862.

[9]  Brad E. Tucker,et al.  A 2.4% DETERMINATION OF THE LOCAL VALUE OF THE HUBBLE CONSTANT , 2016, 1604.01424.

[10]  D. Holz,et al.  A New method for determining cumulative gravitational lensing effects in inhomogeneous universes , 1997, astro-ph/9708036.

[11]  Wendy L. Freedman,et al.  CARNEGIE HUBBLE PROGRAM: A MID-INFRARED CALIBRATION OF THE HUBBLE CONSTANT , 2012, 1208.3281.

[12]  David O. Jones,et al.  Should Type Ia Supernova Distances Be Corrected for Their Local Environments? , 2018, The Astrophysical Journal.

[13]  B. Wandelt,et al.  Beyond the classical distance-redshift test: cross-correlating redshift-free standard candles and sirens with redshift surveys , 2018, 1808.06615.

[14]  A. Farahi,et al.  Percent-Level Test of Isotropic Expansion Using Type Ia Supernovae. , 2019, Physical review letters.

[15]  M. Phillips,et al.  Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant , 1998, astro-ph/9805201.

[16]  Adam A. Miller,et al.  iPTF16geu: A multiply imaged, gravitationally lensed type Ia supernova , 2016, Science.

[17]  R. Ellis,et al.  The Supernova Legacy Survey: Measurement of Omega_M, Omega_Lambda,and w from the First Year Data Set , 2005, astro-ph/0510447.

[18]  Yun Wang Observational signatures of the weak lensing magnification of supernovae , 2004, astro-ph/0406635.

[19]  F. Courbin,et al.  Cosmological Distance Indicators , 2018, Space Science Reviews.

[20]  P. Garnavich,et al.  Think Global, Act Local: The Influence of Environment Age and Host Mass on Type Ia Supernova Light Curves , 2019, The Astrophysical Journal.

[21]  S. Refsdal On the possibility of determining Hubble's parameter and the masses of galaxies from the gravitational lens effect , 1964 .

[22]  S. E. Persson,et al.  The Carnegie Supernova Project: Absolute Calibration and the Hubble Constant , 2018, The Astrophysical Journal.

[23]  S. Rodney,et al.  PythonPhot: Simple DAOPHOT-type photometry in Python , 2015 .

[24]  A. Riess,et al.  The Local Perspective on the Hubble Tension: Local Structure Does Not Impact Measurement of the Hubble Constant , 2019, The Astrophysical Journal.

[25]  Wendy L. Freedman,et al.  THE CARNEGIE SUPERNOVA PROJECT: SECOND PHOTOMETRY DATA RELEASE OF LOW-REDSHIFT TYPE Ia SUPERNOVAE , 2010, 1108.3108.

[26]  Zhongxu Zhai,et al.  Robust and model-independent cosmological constraints from distance measurements , 2018, Journal of Cosmology and Astroparticle Physics.

[27]  Armin Rest,et al.  IMPROVED DARK ENERGY CONSTRAINTS FROM ∼100 NEW CfA SUPERNOVA TYPE Ia LIGHT CURVES , 2009, 0901.4804.

[28]  K. Dawson,et al.  A CALIBRATION OF NICMOS CAMERA 2 FOR LOW COUNT RATES , 2015, 1502.01026.

[29]  A. Pastorello,et al.  COSMOLOGICAL CONSTRAINTS FROM MEASUREMENTS OF TYPE Ia SUPERNOVAE DISCOVERED DURING THE FIRST 1.5 yr OF THE Pan-STARRS1 SURVEY , 2013, 1310.3828.

[30]  J. Sollerman,et al.  Prospects and pitfalls of gravitational lensing in large supernova surveys , 2008, 0806.1387.

[31]  Mamoru Doi,et al.  THE SLOAN DIGITAL SKY SURVEY-II: PHOTOMETRY AND SUPERNOVA IA LIGHT CURVES FROM THE 2005 DATA , 2008, 0908.4277.

[32]  David Alonso,et al.  The LSST Dark Energy Science Collaboration (DESC) Science Requirements Document , 2018, 1809.01669.

[33]  R. Ellis,et al.  Measurements of $\Omega$ and $\Lambda$ from 42 high redshift supernovae , 1998, astro-ph/9812133.

[34]  B. Stalder,et al.  ATLAS: A High-cadence All-sky Survey System , 2018, 1802.00879.

[35]  Safety in Numbers: Gravitational Lensing Degradation of the Luminosity Distance-Redshift Relation , 2004, astro-ph/0412173.

[36]  M. Sullivan,et al.  Improved cosmological constraints from a joint analysis of the SDSS-II and SNLS supernova samples , 2014, 1401.4064.

[37]  Stefano Casertano,et al.  Type Ia Supernova Discoveries at z > 1 from the Hubble Space Telescope: Evidence for Past Deceleration and Constraints on Dark Energy Evolution , 2004, astro-ph/0402512.

[38]  Ralph C. Bohlin,et al.  THE CALSPEC STARS P177D AND P330E , 2015, 1502.01754.

[39]  M. Sullivan,et al.  The Supernova Legacy Survey 3-year sample: Type Ia supernovae photometric distances and cosmological constraints , , 2010, 1010.4743.

[40]  P. Marshall,et al.  Time delay cosmography , 2016, The Astronomy and Astrophysics Review.

[41]  Armin Rest,et al.  CfA3: 185 TYPE Ia SUPERNOVA LIGHT CURVES FROM THE CfA , 2009, 0901.4787.

[42]  A. Riess,et al.  SUPERCAL: CROSS-CALIBRATION OF MULTIPLE PHOTOMETRIC SYSTEMS TO IMPROVE COSMOLOGICAL MEASUREMENTS WITH TYPE Ia SUPERNOVAE , 2015, 1508.05361.

[43]  et al,et al.  UBVRI Light Curves of 44 Type Ia Supernovae , 2005 .

[44]  Umaa Rebbapragada,et al.  The Zwicky Transient Facility: System Overview, Performance, and First Results , 2018, Publications of the Astronomical Society of the Pacific.

[45]  Katarzyna E. Pomian,et al.  HOST GALAXY IDENTIFICATION FOR SUPERNOVA SURVEYS , 2016, 1604.06138.

[46]  A. Rest,et al.  Simulations of the WFIRST Supernova Survey and Forecasts of Cosmological Constraints , 2017, The Astrophysical Journal.

[47]  R. Nichol,et al.  COSMOLOGY WITH PHOTOMETRICALLY CLASSIFIED TYPE Ia SUPERNOVAE FROM THE SDSS-II SUPERNOVA SURVEY , 2012, 1211.4480.

[48]  Gravitational lensing of high-redshift Type Ia supernovae: a probe of medium-scale structure , 1998, astro-ph/9803319.

[49]  Astrophysics,et al.  The All-Sky Automated Survey for Supernovae (ASAS-SN) Light Curve Server v1.0 , 2017, 1706.07060.

[50]  R. Nichol,et al.  THE EFFECT OF WEAK LENSING ON DISTANCE ESTIMATES FROM SUPERNOVAE , 2013, 1307.2566.

[51]  C. Stubbs,et al.  Constraining Temporal Oscillations of Cosmological Parameters Using SNe Ia , 2018, The Astrophysical Journal.

[52]  C. Baltay,et al.  CONFIRMATION OF A STAR FORMATION BIAS IN TYPE Ia SUPERNOVA DISTANCES AND ITS EFFECT ON THE MEASUREMENT OF THE HUBBLE CONSTANT , 2014, 1412.6501.

[53]  Yun Wang Analytical Modeling of the Weak Lensing of Standard Candles. I. Empirical Fitting of Numerical Simulation Results , 1999, astro-ph/9901212.

[54]  C. Baltay,et al.  Evidence of Environmental Dependencies of Type Ia Supernovae from the Nearby Supernova Factory indicated by Local H$\alpha$ , 2013, 1309.1182.

[55]  M. Nonino,et al.  DEJA VU ALL OVER AGAIN: THE REAPPEARANCE OF SUPERNOVA REFSDAL , 2015, 1512.04654.

[56]  C. Tao,et al.  Understanding type Ia supernovae through their U-band spectra , 2018, Astronomy & Astrophysics.

[57]  Ucsb,et al.  Gravitationally lensed quasars and supernovae in future wide-field optical imaging surveys , 2010, 1001.2037.