The Next Generation of Cosmological Measurements with Type Ia Supernovae
暂无分享,去创建一个
Armin Rest | Gautham Narayan | Anthony Challinor | Ningfeng Zhu | Srivatsan Sridhar | Christopher Stubbs | David O. Jones | Asantha Cooray | Saurabh Jha | Feng Shi | Saul Perlmutter | Gong-Bo Zhao | Jean-Paul Kneib | Aritoki Suzuki | Lyman Page | Giuseppe Puglisi | Mickael Rigault | Cora Dvorkin | Levon Pogosian | Nicolas Regnault | Arturo Avelino | Ryan E. Keeley | Suhail Dhawan | Georgios Dimitriadis | Masao Sako | Renee Hlozek | Massimiliano Lattanzi | Greg Aldering | Andrei Nomerotski | Yannick Copin | Marco Raveri | Peter J. Brown | W. M. Wood-Vasey | Adam Riess | Ryan Foley | Christophe Balland | Tamara Davis | Jacobo Asorey | Suvodip Mukherjee | Kaisey Mandel | J. Kneib | P. Brown | W. Wood-Vasey | Gong-Bo Zhao | A. Challinor | L. Page | A. Riess | S. Rodney | S. Jha | A. Suzuki | R. Kessler | M. Sako | D. Brout | C. Stubbs | S. Mukherjee | D. Scolnic | A. Rest | R. Foley | R. Hložek | R. Hounsell | T. Davis | A. Kim | D. Rubin | C. Rojas-Bravo | G. Narayan | G. Aldering | Y. Copin | J. Guy | S. Perlmutter | M. Rigault | A. Filippenko | K. Mandel | S. Dhawan | Yun Wang | N. Regnault | J. Asorey | C. Balland | Benjamin L'Huillier | A. Nomerotski | M. Lattanzi | P. Kelly | G. Dimitriadis | G. Puglisi | A. Cooray | Yuhsin Tsai | W. Handley | N. Zhu | C. Dvorkin | L. Pogosian | M. Raveri | P. Motloch | Julien Guy | Yun Wang | David Rubin | Will Handley | Pavel Motloch | Yu-Dai Tsai | Srivatsan Sridhar | Dan Scolnic | Dillon Brout | Alex Filippenko | Rebekah Hounsell | David Jones | Pat Kelly | Rick Kessler | Alex Kim | Steven Rodney | Justin Roberts-Pierel | Chetan Bavdhankar | Benjamin LHuillier | James Mertens | Cesar Rojas-Bravo | J. Roberts-Pierel | A. Avelino | F. Shi | J. Mertens | Chetan Bavdhankar | G. Zhao | P. Brown | R. Keeley | A. Filippenko
[1] A. Kim,et al. Measuring the Growth Rate of Structure with Type IA Supernovae from LSST , 2017, 1708.08236.
[2] Edward J. Wollack,et al. Wide-Field InfrarRed Survey Telescope-Astrophysics Focused Telescope Assets WFIRST-AFTA 2015 Report , 2015, 1503.03757.
[3] C. Tao,et al. Strong dependence of Type Ia supernova standardization on the local specific star formation rate , 2018, Astronomy & Astrophysics.
[4] Gravitational lensing of Type Ia supernovae , 1999, astro-ph/9912195.
[5] Armin Rest,et al. The Foundation Supernova Survey Motivation, design, implementation, and first data release , 2017, 1711.02474.
[6] David O. Jones,et al. Type Ia Supernova Distances at Redshift >1.5 from the Hubble Space Telescope Multi-cycle Treasury Programs: The Early Expansion Rate , 2017, 1710.00844.
[7] W. Wood-Vasey,et al. CfA4: LIGHT CURVES FOR 94 TYPE Ia SUPERNOVAE , 2012, 1205.4493.
[8] D. Scolnic,et al. Testing ΛCDM at the lowest redshifts with SN Ia and galaxy velocities , 2016, 1611.09862.
[9] Brad E. Tucker,et al. A 2.4% DETERMINATION OF THE LOCAL VALUE OF THE HUBBLE CONSTANT , 2016, 1604.01424.
[10] D. Holz,et al. A New method for determining cumulative gravitational lensing effects in inhomogeneous universes , 1997, astro-ph/9708036.
[11] Wendy L. Freedman,et al. CARNEGIE HUBBLE PROGRAM: A MID-INFRARED CALIBRATION OF THE HUBBLE CONSTANT , 2012, 1208.3281.
[12] David O. Jones,et al. Should Type Ia Supernova Distances Be Corrected for Their Local Environments? , 2018, The Astrophysical Journal.
[13] B. Wandelt,et al. Beyond the classical distance-redshift test: cross-correlating redshift-free standard candles and sirens with redshift surveys , 2018, 1808.06615.
[14] A. Farahi,et al. Percent-Level Test of Isotropic Expansion Using Type Ia Supernovae. , 2019, Physical review letters.
[15] M. Phillips,et al. Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant , 1998, astro-ph/9805201.
[16] Adam A. Miller,et al. iPTF16geu: A multiply imaged, gravitationally lensed type Ia supernova , 2016, Science.
[17] R. Ellis,et al. The Supernova Legacy Survey: Measurement of Omega_M, Omega_Lambda,and w from the First Year Data Set , 2005, astro-ph/0510447.
[18] Yun Wang. Observational signatures of the weak lensing magnification of supernovae , 2004, astro-ph/0406635.
[19] F. Courbin,et al. Cosmological Distance Indicators , 2018, Space Science Reviews.
[20] P. Garnavich,et al. Think Global, Act Local: The Influence of Environment Age and Host Mass on Type Ia Supernova Light Curves , 2019, The Astrophysical Journal.
[21] S. Refsdal. On the possibility of determining Hubble's parameter and the masses of galaxies from the gravitational lens effect , 1964 .
[22] S. E. Persson,et al. The Carnegie Supernova Project: Absolute Calibration and the Hubble Constant , 2018, The Astrophysical Journal.
[23] S. Rodney,et al. PythonPhot: Simple DAOPHOT-type photometry in Python , 2015 .
[24] A. Riess,et al. The Local Perspective on the Hubble Tension: Local Structure Does Not Impact Measurement of the Hubble Constant , 2019, The Astrophysical Journal.
[25] Wendy L. Freedman,et al. THE CARNEGIE SUPERNOVA PROJECT: SECOND PHOTOMETRY DATA RELEASE OF LOW-REDSHIFT TYPE Ia SUPERNOVAE , 2010, 1108.3108.
[26] Zhongxu Zhai,et al. Robust and model-independent cosmological constraints from distance measurements , 2018, Journal of Cosmology and Astroparticle Physics.
[27] Armin Rest,et al. IMPROVED DARK ENERGY CONSTRAINTS FROM ∼100 NEW CfA SUPERNOVA TYPE Ia LIGHT CURVES , 2009, 0901.4804.
[28] K. Dawson,et al. A CALIBRATION OF NICMOS CAMERA 2 FOR LOW COUNT RATES , 2015, 1502.01026.
[29] A. Pastorello,et al. COSMOLOGICAL CONSTRAINTS FROM MEASUREMENTS OF TYPE Ia SUPERNOVAE DISCOVERED DURING THE FIRST 1.5 yr OF THE Pan-STARRS1 SURVEY , 2013, 1310.3828.
[30] J. Sollerman,et al. Prospects and pitfalls of gravitational lensing in large supernova surveys , 2008, 0806.1387.
[31] Mamoru Doi,et al. THE SLOAN DIGITAL SKY SURVEY-II: PHOTOMETRY AND SUPERNOVA IA LIGHT CURVES FROM THE 2005 DATA , 2008, 0908.4277.
[32] David Alonso,et al. The LSST Dark Energy Science Collaboration (DESC) Science Requirements Document , 2018, 1809.01669.
[33] R. Ellis,et al. Measurements of $\Omega$ and $\Lambda$ from 42 high redshift supernovae , 1998, astro-ph/9812133.
[34] B. Stalder,et al. ATLAS: A High-cadence All-sky Survey System , 2018, 1802.00879.
[35] Safety in Numbers: Gravitational Lensing Degradation of the Luminosity Distance-Redshift Relation , 2004, astro-ph/0412173.
[36] M. Sullivan,et al. Improved cosmological constraints from a joint analysis of the SDSS-II and SNLS supernova samples , 2014, 1401.4064.
[37] Stefano Casertano,et al. Type Ia Supernova Discoveries at z > 1 from the Hubble Space Telescope: Evidence for Past Deceleration and Constraints on Dark Energy Evolution , 2004, astro-ph/0402512.
[38] Ralph C. Bohlin,et al. THE CALSPEC STARS P177D AND P330E , 2015, 1502.01754.
[39] M. Sullivan,et al. The Supernova Legacy Survey 3-year sample: Type Ia supernovae photometric distances and cosmological constraints , , 2010, 1010.4743.
[40] P. Marshall,et al. Time delay cosmography , 2016, The Astronomy and Astrophysics Review.
[41] Armin Rest,et al. CfA3: 185 TYPE Ia SUPERNOVA LIGHT CURVES FROM THE CfA , 2009, 0901.4787.
[42] A. Riess,et al. SUPERCAL: CROSS-CALIBRATION OF MULTIPLE PHOTOMETRIC SYSTEMS TO IMPROVE COSMOLOGICAL MEASUREMENTS WITH TYPE Ia SUPERNOVAE , 2015, 1508.05361.
[43] et al,et al. UBVRI Light Curves of 44 Type Ia Supernovae , 2005 .
[44] Umaa Rebbapragada,et al. The Zwicky Transient Facility: System Overview, Performance, and First Results , 2018, Publications of the Astronomical Society of the Pacific.
[45] Katarzyna E. Pomian,et al. HOST GALAXY IDENTIFICATION FOR SUPERNOVA SURVEYS , 2016, 1604.06138.
[46] A. Rest,et al. Simulations of the WFIRST Supernova Survey and Forecasts of Cosmological Constraints , 2017, The Astrophysical Journal.
[47] R. Nichol,et al. COSMOLOGY WITH PHOTOMETRICALLY CLASSIFIED TYPE Ia SUPERNOVAE FROM THE SDSS-II SUPERNOVA SURVEY , 2012, 1211.4480.
[48] Gravitational lensing of high-redshift Type Ia supernovae: a probe of medium-scale structure , 1998, astro-ph/9803319.
[49] Astrophysics,et al. The All-Sky Automated Survey for Supernovae (ASAS-SN) Light Curve Server v1.0 , 2017, 1706.07060.
[50] R. Nichol,et al. THE EFFECT OF WEAK LENSING ON DISTANCE ESTIMATES FROM SUPERNOVAE , 2013, 1307.2566.
[51] C. Stubbs,et al. Constraining Temporal Oscillations of Cosmological Parameters Using SNe Ia , 2018, The Astrophysical Journal.
[52] C. Baltay,et al. CONFIRMATION OF A STAR FORMATION BIAS IN TYPE Ia SUPERNOVA DISTANCES AND ITS EFFECT ON THE MEASUREMENT OF THE HUBBLE CONSTANT , 2014, 1412.6501.
[53] Yun Wang. Analytical Modeling of the Weak Lensing of Standard Candles. I. Empirical Fitting of Numerical Simulation Results , 1999, astro-ph/9901212.
[54] C. Baltay,et al. Evidence of Environmental Dependencies of Type Ia Supernovae from the Nearby Supernova Factory indicated by Local H$\alpha$ , 2013, 1309.1182.
[55] M. Nonino,et al. DEJA VU ALL OVER AGAIN: THE REAPPEARANCE OF SUPERNOVA REFSDAL , 2015, 1512.04654.
[56] C. Tao,et al. Understanding type Ia supernovae through their U-band spectra , 2018, Astronomy & Astrophysics.
[57] Ucsb,et al. Gravitationally lensed quasars and supernovae in future wide-field optical imaging surveys , 2010, 1001.2037.