Special Cases

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés. Special Cases Sébastien Destercke, Didier Dubois

[1]  Glenn Shafer,et al.  A Mathematical Theory of Evidence , 2020, A Mathematical Theory of Evidence.

[2]  Matthias C. M. Troffaes,et al.  On the connection between probability boxes and possibility measures , 2013, Inf. Sci..

[3]  Sébastien Destercke,et al.  Probability boxes on totally preordered spaces for multivariate modelling , 2011, Int. J. Approx. Reason..

[4]  Erik Quaeghebeur Completely Monotone Outer Approximations of Lower Probabilities on Finite Possibility Spaces , 2011, NL-MUA.

[5]  Marco Zaffalon,et al.  Inference and risk measurement with the pari-mutuel model , 2010, Int. J. Approx. Reason..

[6]  Sébastien Destercke,et al.  Using Cloudy Kernels for Imprecise Linear Filtering , 2010, IPMU.

[7]  Didier Dubois,et al.  Interval PERT and Its Fuzzy Extension , 2010, Production Engineering and Management under Fuzziness.

[8]  Marco Zaffalon,et al.  Reliable hidden Markov model filtering through coherent lower previsions , 2009, 2009 12th International Conference on Information Fusion.

[9]  Michael Oberguggenberger,et al.  Classical and imprecise probability methods for sensitivity analysis in engineering: A case study , 2009, Int. J. Approx. Reason..

[10]  Arnold Neumaier,et al.  Potential Based Clouds in Robust Design Optimization , 2009 .

[11]  Diego A. Alvarez,et al.  A Monte Carlo-based method for the estimation of lower and upper probabilities of events using infinite random sets of indexable type , 2009, Fuzzy Sets Syst..

[12]  Pauline Coolen-Schrijner,et al.  Imprecision in Statistical Theory and Practice , 2009 .

[13]  Thomas Augustin,et al.  Approximation of coherent lower probabilities by 2-monotone measures , 2009 .

[14]  Irit,et al.  Noise quantization via possibilistic filtering , 2009 .

[15]  Didier Dubois,et al.  Unifying practical uncertainty representations. II: Clouds , 2008, Int. J. Approx. Reason..

[16]  Didier Dubois,et al.  Unifying practical uncertainty representations - I: Generalized p-boxes , 2008, Int. J. Approx. Reason..

[17]  Alain Chateauneuf,et al.  Some Characterizations of Lower Probabilities and Other Monotone Capacities through the use of Möbius Inversion , 1989, Classic Works of the Dempster-Shafer Theory of Belief Functions.

[18]  Glenn Shafer,et al.  Allocations of Probability , 1979, Classic Works of the Dempster-Shafer Theory of Belief Functions.

[19]  Arthur P. Dempster,et al.  Upper and Lower Probabilities Induced by a Multivalued Mapping , 1967, Classic Works of the Dempster-Shafer Theory of Belief Functions.

[20]  Gilles Mauris,et al.  Inferring a Possibility Distribution from Very Few Measurements , 2008, SMPS.

[21]  P. M. Williams,et al.  Notes on conditional previsions , 2007, Int. J. Approx. Reason..

[22]  Didier Dubois,et al.  Practical representations of incomplete probabilistic knowledge , 2006, Comput. Stat. Data Anal..

[23]  Thierry Denoeux,et al.  Constructing belief functions from sample data using multinomial confidence regions , 2006, Int. J. Approx. Reason..

[24]  Philippe Smets,et al.  Belief functions on real numbers , 2005, Int. J. Approx. Reason..

[25]  Inés Couso,et al.  Random sets as imprecise random variables , 2005 .

[26]  Inés Couso,et al.  A random set characterization of possibility measures , 2004, Inf. Sci..

[27]  Arnold Neumaier Clouds, Fuzzy Sets, and Probability Intervals , 2004, Reliab. Comput..

[28]  Didier Dubois,et al.  Probability-Possibility Transformations, Triangular Fuzzy Sets, and Probabilistic Inequalities , 2004, Reliab. Comput..

[29]  Jim W. Hall,et al.  Generation, combination and extension of random set approximations to coherent lower and upper probabilities , 2004, Reliab. Eng. Syst. Saf..

[30]  Inés Couso,et al.  Extreme points of credal sets generated by 2-alternating capacities , 2003, Int. J. Approx. Reason..

[31]  Scott Ferson,et al.  Constructing Probability Boxes and Dempster-Shafer Structures , 2003 .

[32]  Marco Zaffalon The naive credal classifier , 2002 .

[33]  INES COUSO,et al.  The Necessity of the Strong a-Cuts of a Fuzzy Set , 2001, Int. J. Uncertain. Fuzziness Knowl. Based Syst..

[34]  Thierry Denoeux,et al.  Inner and Outer Approximation of Belief Structures Using a Hierarchical Clustering Approach , 2001, Int. J. Uncertain. Fuzziness Knowl. Based Syst..

[35]  Peter Walley,et al.  Towards a unified theory of imprecise probability , 2000, Int. J. Approx. Reason..

[36]  Joseph B. Kadane,et al.  Rethinking the Foundations of Statistics: Subject Index , 1999 .

[37]  Hung T. Nguyen,et al.  Possibility Theory, Probability and Fuzzy Sets Misunderstandings, Bridges and Gaps , 2000 .

[38]  Nic Wilson Algorithms for Dempster-Shafer Theory , 2000 .

[39]  Gert de Cooman,et al.  Supremum Preserving Upper Probabilities , 1999, Inf. Sci..

[40]  Didier Dubois,et al.  Possibility Theory: Qualitative and Quantitative Aspects , 1998 .

[41]  Michel Grabisch,et al.  K-order Additive Discrete Fuzzy Measures and Their Representation , 1997, Fuzzy Sets Syst..

[42]  Lonnie Chrisman,et al.  Propagation of 2-Monotone Lower Probabilities on an Undirected Graph , 1996, UAI.

[43]  H. W. Kalfsbeek,et al.  Elicitation, assessment, and pooling of expert judgments using possibility theory , 1995, IEEE Trans. Fuzzy Syst..

[44]  Luis M. de Campos,et al.  Probability Intervals: a Tool for uncertain Reasoning , 1994, Int. J. Uncertain. Fuzziness Knowl. Based Syst..

[45]  James O. Berger,et al.  An overview of robust Bayesian analysis , 1994 .

[46]  Robert Kennes,et al.  Computational aspects of the Mobius transformation of graphs , 1992, IEEE Trans. Syst. Man Cybern..

[47]  P. Walley Statistical Reasoning with Imprecise Probabilities , 1990 .

[48]  M. Sugeno,et al.  An interpretation of fuzzy measures and the Choquet integral as an integral with respect to a fuzzy , 1989 .

[49]  D. Dubois,et al.  Properties of measures of information in evidence and possibility theories , 1987 .

[50]  T. Fine,et al.  A Note on Undominated Lower Probabilities , 1986 .

[51]  Thomas M. Strat Continuous Belief Functions for Evidential Reasoning , 1984, AAAI.

[52]  G. Matheron Random Sets and Integral Geometry , 1976 .

[53]  M. Stone,et al.  Studies in Subjective Probability , 1965 .

[54]  G. Choquet Theory of capacities , 1954 .

[55]  W. Feller On the Kolmogorov–Smirnov Limit Theorems for Empirical Distributions , 1948 .