Decomposition of arrow type positive semidefinite matrices with application to topology optimization
暂无分享,去创建一个
[1] I. Katz. Remarks on two recent results in matrix theory , 1972 .
[2] L. Rodman,et al. Positive semidefinite matrices with a given sparsity pattern , 1988 .
[3] Katsuki Fujisawa,et al. Exploiting sparsity in semidefinite programming via matrix completion II: implementation and numerical results , 2003, Math. Program..
[4] J. Petersson,et al. A Finite Element Analysis of Optimal Variable Thickness Sheets , 1999 .
[5] Naonori Kakimura,et al. A direct proof for the matrix decomposition of chordal-structured positive semidefinite matrices , 2010 .
[6] Kazuo Murota,et al. Exploiting Sparsity in Semidefinite Programming via Matrix Completion I: General Framework , 2000, SIAM J. Optim..
[7] Yoshio Okamoto,et al. B-453 User's Manual for SparseCoLO: Conversion Methods for SPARSE COnic-form Linear Optimization Problems , 2009 .
[8] Alfio Quarteroni,et al. Theory and Application of Steklov-Poincaré Operators for Boundary-Value Problems , 1991 .
[9] Günter Leugering,et al. Multidisciplinary Free Material Optimization , 2010, SIAM J. Appl. Math..
[10] Charles R. Johnson,et al. Positive definite completions of partial Hermitian matrices , 1984 .
[11] Andreas Griewank,et al. On the existence of convex decompositions of partially separable functions , 1984, Math. Program..
[12] Masakazu Kojima,et al. Exploiting sparsity in linear and nonlinear matrix inequalities via positive semidefinite matrix completion , 2011, Math. Program..
[13] Martin S. Andersen,et al. Chordal Graphs and Semidefinite Optimization , 2015, Found. Trends Optim..