The stability of photoactive kaolinite/TiO2 composite

[1]  W. Lindsay Chemical equilibria in soils , 1979 .

[2]  N. Serpone,et al.  Photocatalysis: Fundamentals and Applications , 1989 .

[3]  W. Goddard,et al.  Charge equilibration for molecular dynamics simulations , 1991 .

[4]  C. Howard,et al.  Structural and thermal parameters for rutile and anatase , 1991 .

[5]  W. Goddard,et al.  UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations , 1992 .

[6]  J. Ganor,et al.  The effect of pH on kaolinite dissolution rates and on activation energy , 1995 .

[7]  G. Marcì,et al.  Influence of some aromatic and aliphatic compounds on the rate of photodegradation of phenol in aqueous suspensions of TiO2 , 1995 .

[8]  J. Dandurand,et al.  Gibbs free energy of formation of kaolinite from solubility measurement in basic solution between 60 and 170 °C , 1996 .

[9]  L. Chou,et al.  Mechanism of kaolinite dissolution at room temperature and pressure , 1998 .

[10]  L. Palmisano,et al.  Photocatalytic oxidation of gaseous toluene on anatase TiO2 catalyst: mechanistic aspects and FT-IR investigation , 1999 .

[11]  L. Chou,et al.  Mechanism of kaolinite dissolution at room temperature and pressure Part II: kinetic study , 1999 .

[12]  M. Burghammer,et al.  Refinement of the Kaolinite Structure From Single-Crystal Synchrotron Data , 1999 .

[13]  J. Ganor,et al.  Stirring effect on kaolinite dissolution rate , 2001 .

[14]  G. Kakali,et al.  Thermal treatment of kaolin : the effect of mineralogy on the pozzolanic activity , 2001 .

[15]  V. Kočí,et al.  Toxicological testing of high-salinity samples [in Czech] , 2002 .

[16]  G. Rauret,et al.  Overview of the use of leaching/extraction tests for risk assessment of trace metals in contaminated soils and sediments , 2003 .

[17]  É. Makó,et al.  Surface modification of mechanochemically activated kaolinites by selective leaching. , 2006, Journal of colloid and interface science.

[18]  C. Steefel,et al.  Kaolinite dissolution and precipitation kinetics at 22 °C and pH 4 , 2007 .

[19]  Fangbai Li,et al.  TiO2 hydrosols with high activity for photocatalytic degradation of formaldehyde in a gaseous phase. , 2008, Journal of hazardous materials.

[20]  Xiaoshan Zhu,et al.  Toxicity and bioaccumulation of TiO2 nanoparticle aggregates in Daphnia magna. , 2010, Chemosphere.

[21]  V. Matějka,et al.  Preparation and characterization of photoactive composite kaolinite/TiO(2). , 2011, Journal of hazardous materials.

[22]  P. Čapková,et al.  Structure and stability of kaolinite/TiO2 nanocomposite: DFT and MM computations , 2012, Journal of Molecular Modeling.

[23]  V. Matějka,et al.  Comparison of the pure TiO2 and kaolinite/TiO2 composite as catalyst for CO2 photocatalytic reduction , 2011 .

[24]  X. Sima,et al.  Effects of nano-scale TiO2, ZnO and their bulk counterparts on zebrafish: acute toxicity, oxidative stress and oxidative damage. , 2011, The Science of the total environment.

[25]  N. Chandrasekaran,et al.  Studies on toxicity of aluminum oxide (Al2O3) nanoparticles to microalgae species: Scenedesmus sp. and Chlorella sp. , 2011 .

[26]  H. A. van der Sloot,et al.  Use of characterisation leaching tests and associated modelling tools in assessing the hazardous nature of wastes. , 2012, Journal of hazardous materials.

[27]  F. Hong,et al.  Pulmotoxicological effects caused by long-term titanium dioxide nanoparticles exposure in mice. , 2012, Journal of hazardous materials.

[28]  Adela P Galvín,et al.  Comparison of batch leaching tests and influence of pH on the release of metals from construction and demolition wastes. , 2012, Waste management.

[29]  Laura Clément,et al.  Toxicity of TiO(2) nanoparticles to cladocerans, algae, rotifers and plants - effects of size and crystalline structure. , 2013, Chemosphere.