Clinical outcomes of xeno-free expansion and transplantation of autologous ocular surface epithelial stem cells via contact lens delivery: a prospective case series

[1]  D. Wakefield,et al.  Tracing the Fate of Limbal Epithelial Progenitor Cells in the Murine Cornea , 2015, Stem cells.

[2]  N. Di Girolamo,et al.  Vitronectin: a migration and wound healing factor for human corneal epithelial cells. , 2014, Investigative ophthalmology & visual science.

[3]  C. Joo,et al.  Regeneration of corneal epithelium with conjunctival epithelial equivalents generated in serum and feeder cell-free medium , 2014 .

[4]  K. Nishida,et al.  Differences between niche cells and limbal stromal cells in maintenance of corneal limbal stem cells. , 2014, Investigative ophthalmology & visual science.

[5]  David Steele,et al.  Acrylic acid surface-modified contact lens for the culture of limbal stem cells. , 2014, Tissue engineering. Part A.

[6]  David Steele,et al.  Plasma polymer-coated contact lenses for the culture and transfer of corneal epithelial cells in the treatment of limbal stem cell deficiency. , 2014, Tissue engineering. Part A.

[7]  P. McNutt,et al.  Cultivation and Characterization of Limbal Epithelial Stem Cells on Contact Lenses With a Feeder Layer: Toward the Treatment of Limbal Stem Cell Deficiency , 2014, Cornea.

[8]  M. Nardi,et al.  Biological parameters determining the clinical outcome of autologous cultures of limbal stem cells. , 2013, Regenerative medicine.

[9]  Z. Berneman,et al.  Results of a phase I/II clinical trial: standardized, non-xenogenic, cultivated limbal stem cell transplantation , 2013, Journal of Translational Medicine.

[10]  S. MacNeil,et al.  Simplifying corneal surface regeneration using a biodegradable synthetic membrane and limbal tissue explants. , 2013, Biomaterials.

[11]  J. A. Gomes,et al.  Transplantation of Conjunctival Epithelial Cells Cultivated Ex Vivo in Patients With Total Limbal Stem Cell Deficiency , 2013, Cornea.

[12]  E. Holland,et al.  Severe limbal stem cell deficiency from contact lens wear: patient clinical features. , 2013, American journal of ophthalmology.

[13]  T. Utheim,et al.  Biopsy harvesting site and distance from the explant affect conjunctival epithelial phenotype ex vivo. , 2012, Experimental eye research.

[14]  C. McGhee,et al.  Current status and future prospects for cultured limbal tissue transplants in Australia and New Zealand , 2012, Clinical & experimental ophthalmology.

[15]  I. Schwab,et al.  Silk fibroin as a biomaterial substrate for corneal epithelial cell sheet generation. , 2012, Investigative ophthalmology & visual science.

[16]  T. Utheim,et al.  Effect of biopsy location and size on proliferative capacity of ex vivo expanded conjunctival tissue. , 2012, Investigative ophthalmology & visual science.

[17]  D. Lockington,et al.  Free radicals and the pH of topical glaucoma medications: a lifetime of ocular chemical injury? , 2012, Eye.

[18]  V. Sangwan,et al.  Clinical outcomes of repeat autologous cultivated limbal epithelial transplantation for ocular surface burns. , 2012, American journal of ophthalmology.

[19]  D. Wakefield,et al.  Vitronectin: a matrix support factor for human limbal epithelial progenitor cells. , 2011, Investigative ophthalmology & visual science.

[20]  D. Balasubramanian,et al.  Clinical outcomes of xeno-free autologous cultivated limbal epithelial transplantation: a 10-year study , 2011, British Journal of Ophthalmology.

[21]  Francisco Figueiredo,et al.  13 years of cultured limbal epithelial cell therapy: A review of the outcomes , 2011, Journal of cellular biochemistry.

[22]  G. Pellegrini,et al.  Limbal stem-cell therapy and long-term corneal regeneration. , 2010, The New England journal of medicine.

[23]  S. Ferrari,et al.  Techniques for culture and assessment of limbal stem cell grafts. , 2010, The ocular surface.

[24]  N. Koizumi,et al.  Cultivated human conjunctival epithelial transplantation for total limbal stem cell deficiency. , 2010, Investigative ophthalmology & visual science.

[25]  A. Hopkinson,et al.  Standardized limbal epithelial stem cell graft generation and transplantation. , 2010, Tissue engineering. Part C, Methods.

[26]  J. Daniels,et al.  New technologies in limbal epithelial stem cell transplantation. , 2009, Current opinion in biotechnology.

[27]  D. Wakefield,et al.  A Contact Lens-Based Technique for Expansion and Transplantation of Autologous Epithelial Progenitors for Ocular Surface Reconstruction , 2009, Transplantation.

[28]  S. MacNeil,et al.  Development of a surface-modified contact lens for the transfer of cultured limbal epithelial cells to the cornea for ocular surface diseases. , 2009, Tissue engineering. Part A.

[29]  Y. Barrandon,et al.  Oligopotent stem cells are distributed throughout the mammalian ocular surface , 2008, Nature.

[30]  S. Dravida,et al.  A biomimetic scaffold for culturing limbal stem cells: a promising alternative for clinical transplantation , 2008, Journal of tissue engineering and regenerative medicine.

[31]  Zainuddin,et al.  Bombyx mori silk fibroin membranes as potential substrata for epithelial constructs used in the management of ocular surface disorders. , 2008, Tissue engineering. Part A.

[32]  G. A. Limb,et al.  Transplantation of ex vivo cultured limbal epithelial stem cells: a review of techniques and clinical results. , 2007, Survey of ophthalmology.

[33]  K. Tsubota,et al.  Factors influencing outcomes in cultivated limbal epithelial transplantation for chronic cicatricial ocular surface disorders. , 2007, American journal of ophthalmology.

[34]  J. Alió,et al.  Human Anterior Lens Capsule as a Biologic Substrate for the Ex Vivo Expansion of Limbal Stem Cells in Ocular Surface Reconstruction , 2007, Cornea.

[35]  D. Wakefield,et al.  Cultured human ocular surface epithelium on therapeutic contact lenses , 2006, British Journal of Ophthalmology.

[36]  N. Koizumi,et al.  Establishment of a cultivated human conjunctival epithelium as an alternative tissue source for autologous corneal epithelial transplantation. , 2006, Investigative ophthalmology & visual science.

[37]  S. Kinoshita,et al.  Clusters of corneal epithelial cells reside ectopically in human conjunctival epithelium. , 2006, Investigative ophthalmology & visual science.

[38]  A. Romano,et al.  Survival analysis of conjunctival limbal grafts and amniotic membrane transplantation in eyes with total limbal stem cell deficiency. , 2005, American journal of ophthalmology.

[39]  H. Dua,et al.  Stem cell differentiation and the effects of deficiency , 2003, Eye.

[40]  K. Tsubota,et al.  Transplantation of human limbal epithelium cultivated on amniotic membrane for the treatment of severe ocular surface disorders. , 2002, Ophthalmology.

[41]  S. Tseng,et al.  The role of NGF signaling in human limbal epithelium expanded by amniotic membrane culture. , 2002, Investigative ophthalmology & visual science.

[42]  G. Pellegrini,et al.  Autologous fibrin-cultured limbal stem cells permanently restore the corneal surface of patients with total limbal stem cell deficiency. , 2001, Transplantation.

[43]  D. H. Ma,et al.  Identification of Antiangiogenic and Antiinflammatory Proteins in Human Amniotic Membrane , 2000, Cornea.

[44]  H. Dua,et al.  Limbal stem cells of the corneal epithelium. , 2000, Survey of ophthalmology.

[45]  G. Pellegrini,et al.  Location and Clonal Analysis of Stem Cells and Their Differentiated Progeny in the Human Ocular Surface , 1999, The Journal of cell biology.

[46]  W. Kao,et al.  Conjunctival epithelial cells can resurface denuded cornea, but do not transdifferentiate to express cornea-specific keratin 12 following removal of limbal epithelium in mouse. , 1996, Differentiation; research in biological diversity.

[47]  T. Sun,et al.  Rabbit conjunctival and corneal epithelial cells belong to two separate lineages. , 1996, Investigative ophthalmology & visual science.

[48]  T. Sun,et al.  In vitro growth and differentiation of rabbit bulbar, fornix, and palpebral conjunctival epithelia. Implications on conjunctival epithelial transdifferentiation and stem cells. , 1993, Investigative ophthalmology & visual science.

[49]  S. Tseng,et al.  Limbal autograft transplantation for ocular surface disorders. , 1989, Ophthalmology.

[50]  T. Sun,et al.  Existence of slow-cycling limbal epithelial basal cells that can be preferentially stimulated to proliferate: Implications on epithelial stem cells , 1989, Cell.

[51]  J. Friend,et al.  Corneal re-epithelialization from the conjunctiva. , 1981, Investigative ophthalmology & visual science.

[52]  T. Utheim Limbal epithelial cell therapy: past, present, and future. , 2013, Methods in molecular biology.

[53]  F. Watt,et al.  Lineage Tracing , 2012, Cell.

[54]  N. Koizumi,et al.  A comparison between cultivated and conventional limbal stem cell transplantation for Stevens-Johnson syndrome. , 2007, American journal of ophthalmology.

[55]  O. Sundin,et al.  The Pax-6 homeobox gene is expressed throughout the corneal and conjunctival epithelia. , 1997, Investigative ophthalmology & visual science.