Ezrin Interacts with Focal Adhesion Kinase and Induces Its Activation Independently of Cell-matrix Adhesion*

Ezrin, a membrane-cytoskeleton linker, is required for cell morphogenesis, motility, and survival through molecular mechanisms that remain to be elucidated. Using the N-terminal domain of ezrin as a bait, we found that p125 focal adhesion kinase (FAK) interacts with ezrin. We show that the two proteins coimmunoprecipitate from cultured cell lysates. However, FAK does not interact with full-length ezrin in vitro, indicating that the FAK binding site on ezrin is cryptic. Mapping experiments showed that the entire N-terminal domain of FAK (amino acids 1–376) is required for optimal ezrin binding. While investigating the role of the ezrin-FAK interaction, we observed that, in suspended kidney-derived epithelial LLC-PK1 cells, overproduction of ezrin promoted phosphorylation of FAK Tyr-397, the major autophosphorylation site, creating a docking site for FAK signaling partners. Treatment of the cells with a Src family kinase inhibitor reduced the phosphorylation of Tyr-577 but not that of Tyr-397, indicating that ezrin-mediated FAK activation does not require the activity of Src kinases. Altogether, these observations indicate that ezrin is able to trigger FAK activation in signaling events that are not elicited by cell-matrix adhesion.

[1]  E. Rozengurt,et al.  Src Family Kinases Are Required for Integrin-mediated but Not for G Protein-coupled Receptor Stimulation of Focal Adhesion Kinase Autophosphorylation at Tyr-397* , 2001, The Journal of Biological Chemistry.

[2]  A. Gautreau,et al.  Morphogenic Effects of Ezrin Require a Phosphorylation-Induced Transition from Oligomers to Monomers at the Plasma Membrane , 2000, The Journal of cell biology.

[3]  A. Bretscher,et al.  ERM-Merlin and EBP50 protein families in plasma membrane organization and function. , 2000, Annual review of cell and developmental biology.

[4]  T. Matsui,et al.  Activation of ERM proteins in vivo by Rho involves phosphatidyl-inositol 4-phosphate 5-kinase and not ROCK kinases , 1999, Current Biology.

[5]  M. Tang,et al.  Suppression of Ultraviolet Irradiation-induced Apoptosis by Overexpression of Focal Adhesion Kinase in Madin-Darby Canine Kidney Cells* , 1999, The Journal of Biological Chemistry.

[6]  K. Pestonjamasp,et al.  Regulation of F-actin binding to platelet moesin in vitro by both phosphorylation of threonine 558 and polyphosphatidylinositides. , 1999, Molecular biology of the cell.

[7]  Kenneth M. Yamada,et al.  PTEN Interactions with Focal Adhesion Kinase and Suppression of the Extracellular Matrix-dependent Phosphatidylinositol 3-Kinase/Akt Cell Survival Pathway* , 1999, The Journal of Biological Chemistry.

[8]  A. Gautreau,et al.  Ezrin, a plasma membrane-microfilament linker, signals cell survival through the phosphatidylinositol 3-kinase/Akt pathway. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[9]  Shiro Watanabe,et al.  FAK Is the Upstream Signal Protein of the Phosphatidylinositol 3-Kinase-Akt Survival Pathway in Hydrogen Peroxide-induced Apoptosis of a Human Glioblastoma Cell Line* , 1999, The Journal of Biological Chemistry.

[10]  A. Vaheri,et al.  Association of Ezrin with Intercellular Adhesion Molecule-1 and -2 (ICAM-1 and ICAM-2) , 1998, The Journal of Biological Chemistry.

[11]  A. Bretscher,et al.  The Carboxyl-terminal Region of EBP50 Binds to a Site in the Amino-terminal Domain of Ezrin That Is Masked in the Dormant Molecule* , 1998, The Journal of Biological Chemistry.

[12]  A. Bretscher,et al.  Identification of EBP50: A PDZ-containing Phosphoprotein that Associates with Members of the Ezrin-Radixin-Moesin Family , 1997, The Journal of cell biology.

[13]  F. Sánchez‐Madrid,et al.  Moesin Interacts with the Cytoplasmic Region of Intercellular Adhesion Molecule-3 and Is Redistributed to the Uropod of T Lymphocytes during Cell Polarization , 1997, The Journal of cell biology.

[14]  A. Mammoto,et al.  Direct Interaction of the Rho GDP Dissociation Inhibitor with Ezrin/Radixin/Moesin Initiates the Activation of the Rho Small G Protein* , 1997, The Journal of Biological Chemistry.

[15]  B. Ozanne,et al.  Essential functions of ezrin in maintenance of cell shape and lamellipodial extension in normal and transformed fibroblasts , 1997, Current Biology.

[16]  Alexis Gautreau,et al.  Ezrin Is an Effector of Hepatocyte Growth Factor–mediated Migration and Morphogenesis in Epithelial Cells , 1997, The Journal of cell biology.

[17]  I. Zachary,et al.  Vascular Endothelial Growth Factor Stimulates Tyrosine Phosphorylation and Recruitment to New Focal Adhesions of Focal Adhesion Kinase and Paxillin in Endothelial Cells* , 1997, The Journal of Biological Chemistry.

[18]  E. Feldman,et al.  Tyrosine Phosphorylation of Paxillin and Focal Adhesion Kinase during Insulin-like Growth Factor-I-stimulated Lamellipodial Advance* , 1997, The Journal of Biological Chemistry.

[19]  S. Hanks,et al.  Signaling through focal adhesion kinase , 1997, BioEssays : news and reviews in molecular, cellular and developmental biology.

[20]  T. Sasaki,et al.  Regulation mechanism of ERM (ezrin/radixin/moesin) protein/plasma membrane association: possible involvement of phosphatidylinositol turnover and Rho-dependent signaling pathway , 1996, The Journal of cell biology.

[21]  E. Ruoslahti,et al.  Control of adhesion-dependent cell survival by focal adhesion kinase , 1996, The Journal of cell biology.

[22]  W. Cance,et al.  Attenuation of the expression of the focal adhesion kinase induces apoptosis in tumor cells. , 1996, Cell growth & differentiation : the molecular biology journal of the American Association for Cancer Research.

[23]  A. Shevchenko,et al.  Mass spectrometric sequencing of proteins silver-stained polyacrylamide gels. , 1996, Analytical chemistry.

[24]  A. Bretscher,et al.  Soluble ezrin purified from placenta exists as stable monomers and elongated dimers with masked C-terminal ezrin-radixin-moesin association domains. , 1995, Biochemistry.

[25]  C. Andreoli,et al.  Identification of a phosphatidylinositol‐4,5‐bisphosphate‐binding domain in the N‐terminal region of ezrin , 1995, FEBS letters.

[26]  A. Bretscher,et al.  Ezrin oligomers are major cytoskeletal components of placental microvilli: a proposal for their involvement in cortical morphogenesis , 1995, The Journal of cell biology.

[27]  A. Bretscher,et al.  Ezrin self-association involves binding of an N-terminal domain to a normally masked C-terminal domain that includes the F-actin binding site. , 1995, Molecular biology of the cell.

[28]  F. Solomon,et al.  Molecular dissection of radixin: distinct and interdependent functions of the amino- and carboxy-terminal domains , 1995, The Journal of cell biology.

[29]  P. Mangeat,et al.  Ezrin NH2-terminal domain inhibits the cell extension activity of the COOH-terminal domain , 1995, The Journal of cell biology.

[30]  S. Hanks,et al.  Tyrosine phosphorylation of focal adhesion kinase at sites in the catalytic domain regulates kinase activity: a role for Src family kinases , 1995, Molecular and cellular biology.

[31]  A. Vaheri,et al.  Ezrin has a COOH-terminal actin-binding site that is conserved in the ezrin protein family , 1994, The Journal of cell biology.

[32]  P. Mangeat,et al.  Ezrin has properties to self-associate at the plasma membrane. , 1994, Journal of cell science.

[33]  S. Kanner,et al.  A transmembrane-anchored chimeric focal adhesion kinase is constitutively activated and phosphorylated at tyrosine residues identical to pp125FAK. , 1994, The Journal of biological chemistry.

[34]  N. Sato,et al.  ERM family members as molecular linkers between the cell surface glycoprotein CD44 and actin-based cytoskeletons , 1994, The Journal of cell biology.

[35]  N. Sato,et al.  Perturbation of cell adhesion and microvilli formation by antisense oligonucleotides to ERM family members , 1994, The Journal of cell biology.

[36]  J. Parsons,et al.  Autophosphorylation of the focal adhesion kinase, pp125FAK, directs SH2-dependent binding of pp60src , 1994, Molecular and cellular biology.

[37]  E. Rozengurt,et al.  Platelet-derived growth factor modulation of focal adhesion kinase (p125FAK) and paxillin tyrosine phosphorylation in Swiss 3T3 cells. Bell-shaped dose response and cross-talk with bombesin. , 1994, The Journal of biological chemistry.

[38]  J. Parsons,et al.  Identification of sequences required for the efficient localization of the focal adhesion kinase, pp125FAK, to cellular focal adhesions , 1993, The Journal of cell biology.

[39]  A. Bretscher,et al.  Ezrin is concentrated in the apical microvilli of a wide variety of epithelial cells whereas moesin is found primarily in endothelial cells. , 1993, Journal of cell science.

[40]  A. Bretscher,et al.  Moesin, like ezrin, colocalizes with actin in the cortical cytoskeleton in cultured cells, but its expression is more variable. , 1993, Journal of cell science.

[41]  J. Parsons,et al.  Autonomous expression of a noncatalytic domain of the focal adhesion-associated protein tyrosine kinase pp125FAK , 1993, Molecular and cellular biology.

[42]  N. Sato,et al.  Concentration of an integral membrane protein, CD43 (leukosialin, sialophorin), in the cleavage furrow through the interaction of its cytoplasmic domain with actin-based cytoskeletons , 1993, The Journal of cell biology.

[43]  M. Arpin,et al.  Ezrin contains cytoskeleton and membrane binding domains accounting for its proposed role as a membrane-cytoskeletal linker , 1993, The Journal of cell biology.

[44]  C. Turner,et al.  Tyrosine phosphorylation of paxillin and pp125FAK accompanies cell adhesion to extracellular matrix: a role in cytoskeletal assembly , 1992, The Journal of cell biology.

[45]  T. Hunter,et al.  Identification of the two major epidermal growth factor-induced tyrosine phosphorylation sites in the microvillar core protein ezrin. , 1992, The Journal of biological chemistry.

[46]  D. Shalloway,et al.  Regulation of focal adhesion-associated protein tyrosine kinase by both cellular adhesion and oncogenic transformation , 1992, Nature.

[47]  J. Parsons,et al.  pp125FAK a structurally distinctive protein-tyrosine kinase associated with focal adhesions. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[48]  A. Bretscher Purification of an 80,000-dalton protein that is a component of the isolated microvillus cytoskeleton, and its localization in nonmuscle cells , 1983, The Journal of cell biology.