Learning multi-level representations for affective image recognition

[1]  Nadir Farah,et al.  Recognition of 3D emotional facial expression based on handcrafted and deep feature combination , 2021, Pattern Recognit. Lett..

[2]  Dinesh Kumar Vishwakarma,et al.  Sentiment analysis using deep learning architectures: a review , 2019, Artificial Intelligence Review.

[3]  Haitao Xiong,et al.  Region-based convolutional neural network using group sparse regularization for image sentiment classification , 2019, EURASIP J. Image Video Process..

[4]  Qingming Huang,et al.  Affective Image Content Analysis: A Comprehensive Survey , 2018, IJCAI.

[5]  Min Xu,et al.  Learning Multi-level Deep Representations for Image Emotion Classification , 2016, Neural Processing Letters.

[6]  Sicheng Zhao,et al.  Image Emotion Computing , 2016, ACM Multimedia.

[7]  Amaia Salvador,et al.  Diving Deep into Sentiment: Understanding Fine-tuned CNNs for Visual Sentiment Prediction , 2015, ASM@ACM Multimedia.

[8]  Yue Gao,et al.  Exploring Principles-of-Art Features For Image Emotion Recognition , 2014, ACM Multimedia.

[9]  Rongrong Ji,et al.  SentiBank: large-scale ontology and classifiers for detecting sentiment and emotions in visual content , 2013, ACM Multimedia.

[10]  Rongrong Ji,et al.  Large-scale visual sentiment ontology and detectors using adjective noun pairs , 2013, ACM Multimedia.

[11]  Jiebo Luo,et al.  Sentribute: image sentiment analysis from a mid-level perspective , 2013, WISDOM '13.

[12]  Allan Hanbury,et al.  Affective image classification using features inspired by psychology and art theory , 2010, ACM Multimedia.

[13]  Josef Lakonishok,et al.  Momentum Strategies , 1995 .

[14]  P. Valdez,et al.  Effects of color on emotions. , 1994, Journal of experimental psychology. General.

[15]  Qingming Huang,et al.  Dependency Exploitation: A Unified CNN-RNN Approach for Visual Emotion Recognition , 2017, IJCAI.