Dynamics of Recognition between tRNA and elongation factor Tu.

Elongation factor Tu (EF-Tu) binds to all standard aminoacyl transfer RNAs (aa-tRNAs) and transports them to the ribosome while protecting the ester linkage between the tRNA and its cognate amino acid. We use molecular dynamics simulations to investigate the dynamics of the EF-Tu.guanosine 5'-triphosphate.aa-tRNA(Cys) complex and the roles played by Mg2+ ions and modified nucleosides on the free energy of protein.RNA binding. Individual modified nucleosides have pronounced effects on the structural dynamics of tRNA and the EF-Tu.Cys-tRNA(Cys) interface. Combined energetic and evolutionary analyses identify the coevolution of residues in EF-Tu and aa-tRNAs at the binding interface. Highly conserved EF-Tu residues are responsible for both attracting aa-tRNAs as well as providing nearby nonbonded repulsive energies that help fine-tune molecular attraction at the binding interface. In addition to the 3' CCA end, highly conserved tRNA nucleotides G1, G52, G53, and U54 contribute significantly to EF-Tu binding energies. Modification of U54 to thymine affects the structure of the tRNA common loop resulting in a change in binding interface contacts. In addition, other nucleotides, conserved within certain tRNA specificities, may be responsible for tuning aa-tRNA binding to EF-Tu. The trend in EF-Tu.Cys-tRNA(Cys) binding energies observed as the result of mutating the tRNA agrees with experimental observation. We also predict variations in binding free energies upon misacylation of tRNA(Cys) with d-cysteine or O-phosphoserine and upon changing the protonation state of l-cysteine. Principal components analysis in each case reveals changes in the communication network across the protein.tRNA interface and is the basis for the entropy calculations.

[1]  Mathias Sprinzl,et al.  Compilation of tRNA sequences and sequences of tRNA genes , 1993, Nucleic Acids Res..

[2]  S Thirup,et al.  Crystal Structure of the Ternary Complex of Phe-tRNAPhe, EF-Tu, and a GTP Analog , 1995, Science.

[3]  R. Jernigan,et al.  Global ribosome motions revealed with elastic network model. , 2004, Journal of structural biology.

[4]  M. W. Gray,et al.  Pseudouridine in RNA: What, Where, How, and Why , 2000, IUBMB life.

[5]  T. Darden,et al.  Particle mesh Ewald: An N⋅log(N) method for Ewald sums in large systems , 1993 .

[6]  P. Auffinger,et al.  Molecular Dynamics Simulations of RNA Systems , 2008 .

[7]  O. Uhlenbeck,et al.  The 51-63 base pair of tRNA confers specificity for binding by EF-Tu. , 2007, RNA.

[8]  Alexander D. MacKerell,et al.  All‐atom empirical force field for nucleic acids: I. Parameter optimization based on small molecule and condensed phase macromolecular target data , 2000 .

[9]  A. Favre,et al.  4-Thiouridine triggers both growth delay induced by near-ultraviolet light and photoprotection. , 2005, European journal of biochemistry.

[10]  Klaus Schulten,et al.  Mechanical force generation by G proteins , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[11]  S. Osawa,et al.  Evolutionary relationship of archaebacteria, eubacteria, and eukaryotes inferred from phylogenetic trees of duplicated genes. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[12]  R. Giegé,et al.  Atypical archaeal tRNA pyrrolysine transcript behaves towards EF-Tu as a typical elongator tRNA. , 2004, Nucleic acids research.

[13]  E Westhof,et al.  Molecular dynamics simulations of solvated yeast tRNA(Asp). , 1999, Biophysical journal.

[14]  J. Cowan,et al.  The Biological chemistry of magnesium , 1995 .

[15]  Z. Luthey-Schulten,et al.  Cytochrome c2 Exit Strategy:  Dissociation Studies and Evolutionary Implications , 2007 .

[16]  Maria Jesus Martin,et al.  The SWISS-PROT protein knowledgebase and its supplement TrEMBL in 2003 , 2003, Nucleic Acids Res..

[17]  G. Krauss,et al.  Ternary complex formation between elongation factor Tu, GTP and aminoacyl-tRNA: an equilibrium study. , 1977, European journal of biochemistry.

[18]  J. Yates,et al.  RNA-Dependent Cysteine Biosynthesis in Archaea , 2005, Science.

[19]  J. Thompson,et al.  CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. , 1994, Nucleic acids research.

[20]  L. Bosch,et al.  The elongation factor EF-Tu and its two encoding genes. , 1983, Progress in nucleic acid research and molecular biology.

[21]  S. Eddy,et al.  tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. , 1997, Nucleic acids research.

[22]  P A Kollman,et al.  Structure and thermodynamics of RNA-protein binding: using molecular dynamics and free energy analyses to calculate the free energies of binding and conformational change. , 2000, Journal of molecular biology.

[23]  K Schulten,et al.  VMD: visual molecular dynamics. , 1996, Journal of molecular graphics.

[24]  D. Söll,et al.  Quality control mechanisms during translation. , 1999, Science.

[25]  Lennart Nilsson,et al.  Empirical energy functions for energy minimization and dynamics of nucleic acids , 1986 .

[26]  H. Ohtaki Ionic Solvation in Aqueous and Nonaqueous Solutions , 2001 .

[27]  Zaida Luthey-Schulten,et al.  Evolutionary profiles derived from the QR factorization of multiple structural alignments gives an economy of information. , 2005, Journal of molecular biology.

[28]  S Thirup,et al.  The crystal structure of Cys-tRNACys-EF-Tu-GDPNP reveals general and specific features in the ternary complex and in tRNA. , 1999, Structure.

[29]  P G Schultz,et al.  Expanding the Genetic Code of Escherichia coli , 2001, Science.

[30]  Laxmikant V. Kalé,et al.  Scalable molecular dynamics with NAMD , 2005, J. Comput. Chem..

[31]  A. Rich,et al.  Structural analysis of spermine and magnesium ion binding to yeast phenylalanine transfer RNA. , 1978, Proceedings of the National Academy of Sciences of the United States of America.

[32]  O. Uhlenbeck,et al.  Uniform Binding of Aminoacyl-tRNAs to Elongation Factor Tu by Thermodynamic Compensation , 2001, Science.

[33]  G. Komatsoulis,et al.  Recognition of tRNA(Cys) by Escherichia coli cysteinyl-tRNA synthetase. , 1993, Biochemistry.

[34]  Gregory D. Schuler,et al.  Database resources of the National Center for Biotechnology Information: update , 2004, Nucleic acids research.

[35]  E. Westhof,et al.  RNA hydration: three nanoseconds of multiple molecular dynamics simulations of the solvated tRNA(Asp) anticodon hairpin. , 1997, Journal of molecular biology.

[36]  Zaida Luthey-Schulten,et al.  MultiSeq: unifying sequence and structure data for evolutionary analysis , 2006, BMC Bioinformatics.

[37]  M Karplus,et al.  Molecular switch in signal transduction: reaction paths of the conformational changes in ras p21. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[38]  R. Römer,et al.  tRNA Conformation and Magnesium Binding , 1975 .

[39]  Wilfred F. van Gunsteren,et al.  Absolute entropies from molecular dynamics simulation trajectories , 2000 .

[40]  C. Woese,et al.  Unusual modification patterns in the transfer ribonucleic acids of archaebacteria , 1980, Current Microbiology.

[41]  R. Gupta Halobacterium volcanii tRNAs. Identification of 41 tRNAs covering all amino acids, and the sequences of 33 class I tRNAs. , 1984, The Journal of biological chemistry.

[42]  P. Kollman,et al.  Calculating structures and free energies of complex molecules: combining molecular mechanics and continuum models. , 2000, Accounts of chemical research.

[43]  Inna Dubchak,et al.  The integrated microbial genomes (IMG) system , 2005, Nucleic Acids Res..

[44]  Barry Honig,et al.  Extending the Applicability of the Nonlinear Poisson−Boltzmann Equation: Multiple Dielectric Constants and Multivalent Ions† , 2001 .

[45]  Franck A. P. Vendeix,et al.  Mechanism of expanding the decoding capacity of tRNAs by modification of uridines , 2007, Nature Structural &Molecular Biology.

[46]  R. Hartmann Handbook of RNA biochemistry , 2005 .

[47]  T. N. Bhat,et al.  The Protein Data Bank , 2000, Nucleic Acids Res..

[48]  Hans-Joachim Wieden,et al.  Recognition and selection of tRNA in translation , 2005, FEBS letters.

[49]  D. Davis Stabilization of RNA stacking by pseudouridine. , 1995, Nucleic acids research.

[50]  David E Draper,et al.  A guide to ions and RNA structure. , 2004, RNA.

[51]  Barry Honig,et al.  Calculating the electrostatic properties of RNA provides new insights into molecular interactions and function , 1999, Nature Structural Biology.

[52]  E. Westhof,et al.  Exploration of metal ion binding sites in RNA folds by Brownian-dynamics simulations. , 1998, Structure.

[53]  B Honig,et al.  On the calculation of binding free energies using continuum methods: Application to MHC class I protein‐peptide interactions , 1997, Protein science : a publication of the Protein Society.

[54]  D. Case,et al.  Insights into protein-protein binding by binding free energy calculation and free energy decomposition for the Ras-Raf and Ras-RalGDS complexes. , 2003, Journal of molecular biology.

[55]  Nathan A. Baker,et al.  Electrostatics of nanosystems: Application to microtubules and the ribosome , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[56]  J. Perona,et al.  Shape-selective RNA recognition by cysteinyl-tRNA synthetase , 2004, Nature Structural &Molecular Biology.

[57]  Ioan Andricioaei,et al.  On the calculation of entropy from covariance matrices of the atomic fluctuations , 2001 .

[58]  Zaida Luthey-Schulten,et al.  Evolutionary profiles from the QR factorization of multiple sequence alignments. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[59]  J. Schlitter Estimation of absolute and relative entropies of macromolecules using the covariance matrix , 1993 .

[60]  O. Uhlenbeck,et al.  The affinity of elongation factor Tu for an aminoacyl-tRNA is modulated by the esterified amino acid. , 2004, Biochemistry.

[61]  Christopher I. Jones,et al.  A counterintuitive Mg2+-dependent and modification-assisted functional folding of mitochondrial tRNAs. , 2006, Journal of molecular biology.

[62]  Mark S. Gordon,et al.  General atomic and molecular electronic structure system , 1993, J. Comput. Chem..

[63]  T. Steitz,et al.  The structural basis of ribosome activity in peptide bond synthesis. , 2000, Science.

[64]  H. Becker,et al.  Thermus thermophilus: a link in evolution of the tRNA-dependent amino acid amidation pathways. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[65]  Mark Helm,et al.  Post-transcriptional nucleotide modification and alternative folding of RNA , 2006, Nucleic acids research.

[66]  Nicholas M. Glykos,et al.  Software news and updates carma: A molecular dynamics analysis program , 2006, J. Comput. Chem..

[67]  Lennart Nilsson,et al.  Molecular dynamics applied to nucleic acids. , 2002, Accounts of chemical research.

[68]  T. Steitz,et al.  Insights into editing from an ile-tRNA synthetase structure with tRNAile and mupirocin. , 1999 .

[69]  O. Uhlenbeck,et al.  The tRNA Specificity of Thermus thermophilus EF-Tu , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[70]  M. Winkler,et al.  Solution conformations of unmodified and A(37)N(6)-dimethylallyl modified anticodon stem-loops of Escherichia coli tRNA(Phe). , 2002, Journal of molecular biology.

[71]  C. Woese,et al.  The evolutionary history of Cys-tRNACys formation. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[72]  M. Stanzel,et al.  Discrimination against misacylated tRNA by chloroplast elongation factor Tu. , 1994, European journal of biochemistry.

[73]  Molecular‐dynamics simulation of phenylalanine transfer RNA. II. Amplitudes, anisotropies, and anharmonicities of atomic motions , 1985, Biopolymers.

[74]  J. Perona,et al.  Indirect readout of tRNA for aminoacylation. , 2007, Biochemistry.

[75]  W. Foster Structural elements defining elongation factor Tu mediated suppression of codon ambiguity , 2006, Nucleic acids research.

[76]  P A Kollman,et al.  Molecular dynamics simulation of nucleic acids. , 2000, Annual review of physical chemistry.

[77]  Thomas L. Madden,et al.  BLAST: at the core of a powerful and diverse set of sequence analysis tools , 2004, Nucleic Acids Res..