A mod five approach to modularity of icosahedral galois representations

We give eight new examples of icosahedral Galois representations that satisfy Artin’s conjecture on holomorphicity of their L-function. We give in detail one example of an icosahedral representation of conductor 1376 = 2 5 · 43 that satisfies Artin’s conjecture. We briefly explain the computations behind seven additional examples of conductors 2416 = 2 4 · 151, 3184 = 2 4 · 199, 3556 = 2 2 · 7 · 127, 3756 = 2 2 · 3 · 313, 4108 = 2 2 · 13 · 79, 4288 = 2 6 · 67, and 5373 = 3 3 · 199. We also generalize a result of Sturm on computing congruences between eigenforms.

[1]  John J. Cannon,et al.  The Magma Algebra System I: The User Language , 1997, J. Symb. Comput..

[2]  Jean-Pierre Serre,et al.  Formes modulaires de poids $1$ , 1974 .

[3]  Loïc Merel,et al.  Universal Fourier expansions of modular forms , 1994 .

[4]  Robert P. Langlands,et al.  BASE CHANGE FOR GL(2) , 1980 .

[5]  Richard Taylor,et al.  Icosahedral Galois Representations , 1978 .

[6]  H. Hijikata Explicit formula of the traces of Hecke operators for $\Gamma_{0}(N)$ , 1974 .

[7]  A. Atkin,et al.  Modular Forms , 2017 .

[8]  Companion forms and weight one forms , 1999, math/9905207.

[9]  E. Artin Uber eine neue Art von L-Reihen , 2022 .

[10]  H. Cohen,et al.  Dimensions des espaces de formes modulaires , 1977 .

[11]  Jacob Sturm,et al.  On the congruence of modular forms , 1987 .

[12]  E. Artin Über eine neue art vonL-Reihen , 1924 .

[13]  志村 五郎,et al.  Introduction to the arithmetic theory of automorphic functions , 1971 .

[14]  Richard Taylor,et al.  On icosahedral Artin representations, II , 2003 .

[15]  Gerhard Frey,et al.  On Artin's conjecture for odd 2-dimensional representations , 1994 .

[16]  William Stein,et al.  Explicit approaches to modular abelian varieties , 2000 .

[17]  Benedict H. Gross,et al.  A tameness criterion for Galois representations associated to modular forms $(\mod p)$ , 1990 .

[18]  Kevin Buzzard,et al.  On icosahedral Artin representations , 2001 .

[19]  Jerrold Tunnell,et al.  Artin’s conjecture for representations of octahedral type , 1981 .