Structural, morphological, and optical studies of Rutile-phase TiO2 rods grown on F:SnO2-coated glass substrate by hydrothermal chemical bath deposition

Structural, morphological and optical studies of rutile-phase TiO2 rods, grown on F:SnO2-coated glass substrates, using hydrothermal chemical bath deposition, are reported. The methods used to determine the optical properties of a semiconductor-on-substrate two-medium system have been successfully applied to the following three-medium structure: vertically well-aligned rods of TiO2, an F:SnO2 (FTO) conducting thin film and a glass substrate. Reflectance fringe measurements yielded the thickness of the TiO2 layer to be d = 4.2 μm, which agreed well with the length of rods observed using SEM. The F:SnO2 thickness of 569 nm measured from reflectance fringe spacings also agreed with SEM measurements. A room temperature absorption edge of Eg = 2.90 eV was obtained for the top layer of TiO2 rods, which is similar to other values reported for TiO2. A room temperature absorption edge of Eg = 3.56 eV was determined for the conducting F:SnO2 layer.

[1]  Craig A Grimes,et al.  Use of highly-ordered TiO(2) nanotube arrays in dye-sensitized solar cells. , 2006, Nano letters.

[2]  Fang Qian,et al.  Nitrogen-doped ZnO nanowire arrays for photoelectrochemical water splitting. , 2009, Nano letters.

[3]  Masakazu Sugiyama,et al.  A 24.4% solar to hydrogen energy conversion efficiency by combining concentrator photovoltaic modules and electrochemical cells , 2015 .

[4]  M. Kiuchi,et al.  Structural and optical properties of titanium dioxide films deposited by reactive magnetron sputtering in pure oxygen plasma , 2004 .

[5]  S. Kose,et al.  Optical characterization of SnO2:F films by spectroscopic ellipsometry , 2010 .

[6]  Craig A. Grimes,et al.  A review on highly ordered, vertically oriented TiO2 nanotube arrays: Fabrication, material properties, and solar energy applications , 2006 .

[7]  Xiaohong Zhang,et al.  Facile synthesis of a narrow-gap titanium dioxide anatase/rutile nanofiber film on titanium foil with high photocatalytic activity under sunlight , 2016 .

[8]  Jean-Pierre Jolivet,et al.  Synthesis of brookite TiO2 nanoparticlesby thermolysis of TiCl4 in strongly acidic aqueous media , 2001 .

[9]  Anatoly A. Barybin,et al.  Substrate Effect on the Optical Reflectance and Transmittance of Thin-Film Structures , 2010 .

[10]  J. Hall,et al.  Optical Properties of Cadmium Sulfide and Zinc Sulfide from 0.6 Micron to 14 Microns , 1955 .

[11]  O. Heavens,et al.  Optical properties of thin films — Where to? , 1978 .

[12]  Bin Liu,et al.  Growth of oriented single-crystalline rutile TiO(2) nanorods on transparent conducting substrates for dye-sensitized solar cells. , 2009, Journal of the American Chemical Society.

[13]  Jae Sung Lee,et al.  Single-crystalline, wormlike hematite photoanodes for efficient solar water splitting , 2013, Scientific Reports.

[14]  J. R. DeVore,et al.  Refractive Indices of Rutile and Sphalerite , 1951 .

[15]  Peidong Yang,et al.  Nanowire dye-sensitized solar cells , 2005, Nature materials.

[16]  F. Reizman,et al.  Optical Thickness Measurement of Thin Transparent Films on Silicon , 1965 .

[17]  W. Warta,et al.  Solar cell efficiency tables (version 49) , 2017 .

[18]  P. Yang,et al.  Solution-Grown Zinc Oxide Nanowires , 2006 .

[19]  R. Grigorovici,et al.  Optical Properties and Electronic Structure of Amorphous Germanium , 1966, 1966.

[20]  Wei Zhou,et al.  Band Gap Engineering of SnO2 by Epitaxial Strain: Experimental and Theoretical Investigations , 2014 .

[21]  Yunxia Zhang,et al.  Optical properties of nitrogen-doped SnO2 films: Effect of the electronegativity on refractive index and band gap , 2008 .

[22]  S. Sen,et al.  A simple spectrophotometric method for determination of the optical constants and band gap energy of multiple layer TiO2 thin films , 2004 .

[23]  Guzmán Castiblanco,et al.  Estudio de trampas y centros de recombinación en películas delgadas de compuestos híbridos orgánico/inorgánicos con estructura Perovskita , 2020 .

[24]  Aleksandra Radenovic,et al.  ZnO-Al2O3 and ZnO-TiO2 core-shell nanowire dye-sensitized solar cells. , 2006, The journal of physical chemistry. B.