Inversion algorithms for the spherical Radon and cosine transform
暂无分享,去创建一个
Alfred K. Louis | Evgeny Spodarev | A. Louis | E. Spodarev | M. Riplinger | M. Spiess | M Riplinger | Malte Spiess
[1] Sigurdur Helgason,et al. Geometric Analysis on Symmetric Spaces , 1994 .
[2] Willi Freeden,et al. Spherical Functions of Mathematical Geosciences: A Scalar, Vectorial, and Tensorial Setup , 2008, Geosystems Mathematics.
[3] Thomas Schuster,et al. The Method of Approximate Inverse: Theory and Applications , 2007 .
[4] R. Gorenflo,et al. Abel Integral Equations: Analysis and Applications , 1991 .
[5] Wolfgang Weil,et al. Point Processes of Cylinders, Particles and Flats , 1987 .
[6] Boris Rubin,et al. Inversion formulas for the spherical Radon transform and the generalized cosine transform , 2002, Adv. Appl. Math..
[7] E. Spodarev,et al. Anisotropic Poisson Processes of Cylinders , 2010, Methodology and Computing in Applied Probability.
[8] T. Mattfeldt. Stochastic Geometry and Its Applications , 1996 .
[9] Valdir A. Menegatto. Approximation by spherical convolution , 1997 .
[10] P. Funk. Über Flächen mit lauter geschlossenen geodätischen Linien , 1913 .
[11] Robert S. Strichartz,et al. $L^p$ estimates for Radon transforms in Euclidean and non-Euclidean spaces , 1981 .
[12] Estimating an even spherical measure from its sine transform , 2009 .
[13] R. Kanwal. Linear Integral Equations , 1925, Nature.
[14] Eugene Spodarev,et al. On the rose of intersections of stationary flat processes , 2001, Advances in Applied Probability.
[15] Andreas Wiegmann,et al. Design of acoustic trim based on geometric modeling and flow simulation for non-woven , 2006 .
[16] H. Groemer. Geometric Applications of Fourier Series and Spherical Harmonics , 1996 .
[17] A K Louis,et al. Locating radiating sources for Maxwell's equations using the approximate inverse , 2008 .
[18] N. J. A. Sloane,et al. McLaren’s improved snub cube and other new spherical designs in three dimensions , 1996, Discret. Comput. Geom..
[19] Paul Goodey,et al. Centrally symmetric convex bodies and the spherical Radon transform , 1992 .
[20] Werner Nagel,et al. Stationäre räumliche Faserprozesse und ihre Schnittzahlrosen , 1980, J. Inf. Process. Cybern..
[21] Peter Maass,et al. A mollifier method for linear operator equations of the first kind , 1990 .
[22] A. K. Louis,et al. A Sobolev space analysis of linear regularization methods for ill-posed problems , 2001 .
[23] M. Kiderlen,et al. Algorithms to estimate the rose of directions of a spatial fibre system , 2005, Journal of microscopy.
[24] Jörg Fliege,et al. The distribution of points on the sphere and corresponding cubature formulae , 1999 .
[25] D. Stoyan,et al. Stochastic Geometry and Its Applications , 1989 .
[26] Joseph Mecke,et al. Formulas for stationary planar fibre processes III – intersections with fibre systems , 1981 .
[27] Alfred K. Louis,et al. Combining Image Reconstruction and Image Analysis with an Application to Two-Dimensional Tomography , 2008, SIAM J. Imaging Sci..
[28] P. Milanfar,et al. Convergence of algorithms for reconstructing convex bodies and directional measures , 2006, math/0608011.
[29] Ian H. Sloan,et al. Extremal Systems of Points and Numerical Integration on the Sphere , 2004, Adv. Comput. Math..
[30] Thomas Schuster,et al. On a Regularization Scheme for Linear Operators in Distribution Spaces with an Application to the Spherical Radon Transform , 2005, SIAM J. Appl. Math..
[31] P. McMullen. GEOMETRIC TOMOGRAPHY (Encyclopedia of Mathematics and its Applications 58) , 1997 .