Relaxing with relaxors: a review of relaxor ferroelectrics

Relaxor ferroelectrics were discovered in the 1950s but many of their properties are not understood. In this review, we shall concentrate on materials such as PMN (PbMg1/3Nb2/3O3), which crystallize in the cubic perovskite structure but with the Mg ion, charge 2+, and the Nb ion, charge 5+, randomly distributed over the B site of the perovskite structure. The peak of the dielectric susceptibility for relaxors is much broader in temperature than that of conventional ferroelectrics, while below the maximum of the susceptibility most relaxors remain cubic and show no electric polarization, unlike that observed for conventional ferroelectrics. Because of the large width of the susceptibility, relaxors are often used as capacitors. Recently, there have been many X-ray and neutron scattering studies of relaxors and the results have enabled a more detailed picture to be obtained. An important conclusion is that relaxors can exist in a random field state, as initially proposed by Westphal, Kleemann and Glinchuk, similar to that which has been studied for diluted antiferromagnets. If a relaxor is cooled from a high temperature, then the Burns temperature is a measure of when slow fluctuations become evident. These fluctuations are connected with the disorder and are known as nano-domains. The Burns temperature is not a well-defined transition temperature. At a lower temperature, there is a well-defined boundary to a so-called random field state when the nano-domains become static but there is no long-range periodic order. This phase may have both history-dependent properties and a skin effect in which the surface of the sample is different from that of the bulk material, as also found in experiments on magnetic systems. Section 1 is an introduction to the review, to ferroelectricity and to relaxors. Section 2 gives a description of the results obtained by dielectric, optical, specific heat and other macroscopic properties. These long-wavelength properties give a variety of different characteristic temperatures and do not directly probe the random field state. In Section 3, we describe the results of neutron and X-ray scattering and show that they strongly support the interpretation that relaxors have a random field state. In Section 4, we briefly describe the results for other relaxor systems such as (PMN)1−x (PT) x for which PMN is mixed with different amounts of the ferroelectric lead titanate (PT), and we show that the existence of a random field state enables us also to describe the experimental results for these mixed materials. We hope that this review will inspire further theoretical and experimental work to understand the nature of the random field states and to compare the experimental results more satisfactorily with theory.

[1]  G. Shirane,et al.  Soft mode dynamics above and below the Burns temperature in the relaxor Pb(Mg1/3Nb2/3)O3. , 2001, Physical review letters.

[2]  E. Colla,et al.  Low-frequency dielectric response of PbMg1/3Nb2/3O3 , 1992 .

[3]  Department of Electrical Engineering,et al.  Brillouin scattering and molecular dynamics study of the elastic properties of Pb(Mg 1/3 Nb 2/3 )O 3 , 2007, cond-mat/0701223.

[4]  S. N. Dorogovtsev,et al.  Acoustical properties of disordered ferroelectrics , 1990 .

[5]  L. Brillouin Diffusion de la lumière et des rayons X par un corps transparent homogène - Influence de l'agitation thermique , 1922 .

[6]  J. Hlinka,et al.  Soft mode dispersion and ‘waterfall’ phenomenon in relaxors revisited , 2008 .

[7]  G. Schmidt,et al.  Field‐induced phase transition in lead magnesium niobate , 1980 .

[8]  R. Roy Multiple Ion Substitution in the Perovskite Lattice , 1954 .

[9]  G. Shirane,et al.  Neutron-Scattering Study of Soft Modes in Cubic BaTi O 3 , 1971 .

[10]  R. Cowley,et al.  Quasi-elastic scattering, random fields and phonon-coupling effects in PbMg1/3Nb2/3O3 , 2005, cond-mat/0505584.

[11]  R. Katiyar,et al.  Central peak in light scattering from the relaxor ferroelectric PbMg 1 / 3 Nb 2 / 3 O 3 , 1997 .

[12]  J. Petzelt,et al.  Central-Peak Components and Polar Soft Mode in Relaxor PbMg1/3Nb2/3O3 Crystals , 2004 .

[13]  H. B. Rosenstock Nature of Vibrational Modes in Ionic Crystals , 1961 .

[14]  K. S. Aleksandrov,et al.  Heat capacity of PMN near an electric-field-induced phase transition , 2007 .

[15]  D. Viehland,et al.  Neutron and x-ray diffraction study of cubic [111] field-cooled Pb(Mg1∕3Nb2∕3)O3 , 2007, 0712.0174.

[16]  B. Lüthi,et al.  Ultrasonic Studies Near Structural Phase Transitions , 1981 .

[17]  R. Birgeneau,et al.  Damped soft phonons and diffuse scattering in 40%Pb(Mg1∕3Nb2∕3)O3-60%PbTiO3 , 2006, cond-mat/0603534.

[18]  W. Marsden I and J , 2012 .

[19]  S. Kojima,et al.  E-T phase diagram of lead magnesium niobate relaxor ferroelectric in the Mandelstam-Brillouin scattering spectra , 2004 .

[20]  S. Gvasaliya,et al.  Atomic displacements in PbMg1/3Nb2/3O3 under high pressures , 2008 .

[21]  R. Birgeneau,et al.  Universal static and dynamic properties of the structural transition in Pb(Zn1/3Nb2/3)O-3 , 2003, cond-mat/0301132.

[22]  Erwin,et al.  Transition to long-range order in the three-dimensional random-field Ising model. , 1991, Physical review letters.

[23]  W. Cochran Crystal Stability and the Theory of Ferroelectricity , 1959 .

[24]  P. Vanĕk,et al.  Broadband dielectric spectroscopy of phonons and polar nanoclusters in PbMg 1 / 3 Nb 2 / 3 O 3 − 35 % PbTiO 3 ceramics: Grain size effects , 2009 .

[25]  V. Shuvaeva,et al.  The macroscopic symmetry of Pb(Mg1/3Nb2/3)1−xTixO3 in the morphotropic phase boundary region (x = 0.25–0.5) , 2005, Journal of physics. Condensed matter : an Institute of Physics journal.

[26]  T. Welberry,et al.  Different Models for the Polar Nanodomain Structure of PZN and Other Relaxor Ferroelectrics , 2008 .

[27]  P. Bouvier,et al.  Effect of high pressure on the Pb(Mg 1/3 Nb 2/3 )O 3 -PbTiO 3 solid solution. A Raman scattering investigation , 2004 .

[28]  G. Shirane,et al.  Neutron diffuse scattering from polar nanoregions in the relaxor Pb ( Mg 1 / 3 Nb 2 / 3 ) O 3 , 2001, cond-mat/0109386.

[29]  Ahmad Safari,et al.  Effect of Composition on the Electromechanical Properties of (1‐x)Pb(Mg1/3Nb2/3)O3−XPbTiO3 Ceramics , 2005 .

[30]  Y. Yamada,et al.  Lattice-Dynamical Study of the 110K Phase Transition in SrTiO3 , 1969 .

[31]  Ericka Stricklin-Parker,et al.  Ann , 2005 .

[32]  J. F. Nixon,et al.  Topics in current chemistry , 1982 .

[33]  R. Katiyar,et al.  PbMg1/3Nb2/3O3 as a model object for light scattering experiments , 1999 .

[34]  S. Shapiro,et al.  Two-mode behavior of the PbMg1/3Nb2/3O3 relaxor , 2010 .

[35]  G. Shirane,et al.  Critical Neutron Scattering in SrTi O 3 and KMn F 3 , 1972 .

[36]  A. Bhalla,et al.  Morphotropic phase boundary in relaxor ferroelectric pb(mg1/3nb2/3)o3 ceramics , 1996 .

[37]  I. Robinson,et al.  Superstructure ordering in lanthanum-doped lead magnesium niobate , 2000 .

[38]  K. Button,et al.  Infrared and Millimeter Waves , 1983 .

[39]  A. Tagantsev,et al.  Direct evidence for Vögel–Fulcher freezing in relaxor ferroelectrics , 1998 .

[40]  G. Shirane,et al.  On quasi-elastic scattering and surfaces in SrTiO3 , 1978 .

[41]  J. Gavarri,et al.  X-ray and neutron diffraction studies of the diffuse phase transition in PbMg13Nb23O3 ceramics , 1991 .

[42]  C. Randall,et al.  Scaling Parameters in Frustrated Systems: Spin Glasses and Relaxor Ferroelectrics , 2007 .

[43]  R. Cowley Temperature Dependence of a Transverse Optic Mode in Strontium Titanate , 1962 .

[44]  G. Calvarin,et al.  Dielectric and crystallographic study of the lead magnotantalate relaxor , 1996 .

[45]  G. Shirane Neutron scattering studies of structural phase transitions at Brookhaven , 1974 .

[46]  T. Tojo,et al.  Specific-heat anomaly caused by ferroelectric nanoregions in Pb(Mg(1/3)Nb(2/3))O3 and Pb(Mg(1/3)Ta(2/3))O3 relaxors. , 2003, Physical review letters.

[47]  D. Vanderbilt,et al.  Monoclinic and triclinic phases in higher-order Devonshire theory , 2000, cond-mat/0009337.

[48]  M. Mezouar,et al.  Pressure-induced suppression of the diffuse scattering in the model relaxor ferroelectric PbMg(1/3)Nb(2/3)O3. , 2003, Physical review letters.

[49]  P. Bouvier,et al.  Effect of high pressure on relaxor ferroelectrics , 2002 .

[50]  Kenji Uchino,et al.  Ferroelectric Devices , 2018 .

[51]  S. M. Shapiro,et al.  Structural phase transitions , 2006, cond-mat/0605489.

[52]  K. Fischer Spin glasses (I) , 1983 .

[53]  L. E. Cross,et al.  Freezing of the polarization fluctuations in lead magnesium niobate relaxors , 1990 .

[54]  R. Cowley,et al.  Study of diffuse scattering under hydrostatic pressure in PbMg1/3Nb2/3O3 , 2009, 0910.2108.

[55]  R. Pirc,et al.  Local Polarization Distribution and Edwards-Anderson Order Parameter of Relaxor Ferroelectrics , 1999 .

[56]  R. Cowley Acoustic phonon instabilities and structural phase transitions , 1976 .

[57]  A. Singh,et al.  Powder neutron diffraction study of phase transitions in and a phase diagram of (1-x)[Pb(Mg1/3Nb2/3)O3]-xPbTiO3 , 2006 .

[58]  A. C. Lawson,et al.  Structures of the ferroelectric phases of barium titanate , 1993 .

[59]  G. Burns,et al.  Crystalline ferroelectrics with glassy polarization behavior , 1983 .

[60]  M. Gorev,et al.  Heat capacity study of relaxor PbMg1/3Nb2/3O3 in a wide temperature range , 2003 .

[61]  J. Mésot,et al.  Neutron Scattering in Condensed Matter Physics , 2009 .

[62]  V. V. Chernyshov,et al.  The high-temperature structure of lead magnoniobate , 1994 .

[63]  E. Colla,et al.  Dielectric properties of (PMN)(1−x)(PT)x single crystals for various electrical and thermal histories , 1998 .

[64]  O. Noblanc,et al.  Structural and dielectric studies of Pb(Mg1/3Nb2/3)O3–PbTiO3 ferroelectric solid solutions around the morphotropic boundary , 1996 .

[65]  R. Birgeneau,et al.  The effects of random fields on the critical and bicritical behavior of MnxZn1−xF2 , 1989 .

[66]  S. Vakhrushev,et al.  Glassy phenomena in disordered perovskite-like crystals , 1989 .

[67]  W. Cao,et al.  Raman spectroscopy study of ferroelectric modes in [001]-oriented 0.67Pb(Mg1∕3Nb2∕3)O3–0.33PbTiO3 single crystals , 2005 .

[68]  G. Grüner Millimeter and Submillimeter Wave Spectroscopy of Solids , 1998 .

[69]  A. A. Bokov,et al.  Recent progress in relaxor ferroelectrics with perovskite structure , 2020, Progress in Advanced Dielectrics.

[70]  Alan V. Hewat Structural Phase Transitions , 2006 .

[71]  U. V. Waghmare,et al.  First-principles-based simulations of relaxor ferroelectrics , 2006 .

[72]  R. Cowley,et al.  Neutron scattering studies of the mechanism of ferroelectricity in 68%PbMg1/3Nb2/3O3–32%PbTiO3 , 2007 .

[73]  Seiji Kojima,et al.  Central peaks, acoustic modes, and the dynamics of polar nanoregions in Pb[(Zn1/3Nb2/3)xTi1−x]O3 single crystals studied by Brillouin spectroscopy , 2008 .

[74]  E. Husson,et al.  Short-range order in PbMg13Nb23O3 ceramics by Raman spectroscopy , 1990 .

[75]  A. Klimov,et al.  Dynamical symmetry reduction and discrete tomography of a Ξ atom , 2010 .

[76]  J. H. Fox,et al.  Direct observation of the near-surface layer inPb(Mg1∕3Nb2∕3)O3using neutron diffraction , 2004, cond-mat/0407609.

[77]  Seiji Kojima,et al.  Anomalous dispersion of the elastic constants at the phase transformation of thePbMg1∕3Nb2∕3O3relaxor ferroelectric , 2008 .

[78]  R. Pisarev,et al.  Raman scattering in ordered and disordered perovskite type crystals , 1976 .

[79]  A. Young,et al.  Numerical simulations of the d=3 random field ising model , 1986 .

[80]  Chih‐Long Tsai,et al.  Dielectric, hypersonic, and domain anomalies of (PbMg1/3Nb2/3O3)1-x(PbTiO3)x single crystals , 2001 .

[81]  A. Singh,et al.  Structure and the location of the morphotropic phase boundary region in (1-x)[Pb(Mg1/3Nb2/3)O3]-xPbTiO3 , 2001 .

[82]  R. Blinc,et al.  Effect of Hydrostatic Pressure on the Dielectric Response of Pb(Mg1/3Nb2/3)O3 Relaxor , 2003 .

[83]  Shigeru Hayakawa,et al.  Piezoelectric Properties of Pb(Mg1/3Nb2/3)O3—PbTiO3—PbZrO3 Solid Solution Ceramics , 1965 .

[84]  T. Shrout,et al.  Ultrahigh strain and piezoelectric behavior in relaxor based ferroelectric single crystals , 1997 .

[85]  J. P. Remeika,et al.  Soft Ferroelectric Modes in Lead Titanate , 1970 .

[86]  S. Lushnikov,et al.  Dispersion of hypersonic velocity and damping at diffuse phase transition in PbMg1/3Nb2/3O3 , 1992 .

[87]  M. Wołcyrz,et al.  Interpretation of the diffuse scattering in Pb-based relaxor ferroelectrics in terms of three-dimensional nanodomains of the (110)-directed relative interdomain atomic shifts , 2007 .

[88]  S. Lindsay,et al.  Construction and alignment of a high performance multipass vernier tandem Fabry–Perot interferometer , 1981 .

[89]  N. Setter,et al.  Dielectric relaxation and polar phonon softening in relaxor ferroelectric PbMg1/3Ta2/3O3 , 2007 .

[90]  P. Gehring,et al.  Dynamic origin of the morphotropic phase boundary: Soft modes and phase instability in 0.68Pb(Mg1/3Nb2/3O3)-0.32PbTiO3 , 2008, 0808.3532.

[91]  J. Gavarri,et al.  A structural model for the relaxor PbMg1/3Nb2/3O3 at 5 K , 1991 .

[92]  W. White,et al.  Raman spectroscopic study of order–disorder in lead magnesium niobate , 1994 .

[93]  S. Kojima,et al.  Evolution of the neutron quasielastic scattering through the ferroelectric phase transition in 93%PbZn1∕3Nb2∕3O3–7%PbTiO3 , 2008, 0805.2908.

[94]  J. Hlinka,et al.  Infrared dielectric response of relaxor ferroelectrics , 2006 .

[95]  P. Gehring,et al.  Reassessment of the Burns temperature and its relationship to the diffuse scattering, lattice dynamics, and thermal expansion in relaxor Pb ( Mg 1 / 3 Nb 2 / 3 ) O 3 , 2009, 0904.4234.

[96]  R. Pisarev,et al.  Thermoopitical study of precursor polarization in febroelectrics with diffuse phase transitions , 1992 .

[97]  L. Bellaiche,et al.  Intermediate temperature scale T* in lead-based relaxor systems , 2009, 0901.2604.

[98]  J. M. Worlock,et al.  Soft Phonon Modes and the 110°K Phase Transition in SrTiO3 , 1968 .

[99]  M. Glinchuk Relaxor ferroelectrics: from Cross superparaelectric model to random field theory , 2004 .

[100]  J. Petzelt,et al.  The giant electromechanical response in ferroelectric relaxors as a critical phenomenon , 2006, Nature.

[101]  Cross,et al.  Deviation from Curie-Weiss behavior in relaxor ferroelectrics. , 1992, Physical review. B, Condensed matter.

[102]  C. Randall,et al.  Origin of the "waterfall" effect in phonon dispersion of relaxor perovskites. , 2003, Physical review letters.

[103]  M. Marssi,et al.  Polarized Raman and electrical study of single crystalline titanium modified lead magnesio-niobate , 1998 .

[104]  R. Cowley,et al.  Structural phase transitions I. Landau theory , 1980 .

[105]  S. Kojima,et al.  Different dynamic behaviors of Pb(Mg1/3Ta2/3)O3 and Ba(Mg1/3Ta2/3)O3 single crystals studied by micro-Brillouin scattering and dielectric spectroscopy , 2003 .

[106]  Westphal,et al.  Diffuse phase transitions and random-field-induced domain states of the "relaxor" ferroelectric PbMg1/3Nb2/3O3. , 1992, Physical review letters.

[107]  R. Birgeneau,et al.  Ferroelectric ordering in the relaxor Pb(Mg1/3Nb2/3)O3 as evidenced by low-temperature phonon anomalies , 2001, cond-mat/0112366.

[108]  D. Strauch,et al.  Inelastic neutron scattering study of the relaxor ferroelectric PbMg1/3Nb2/3O3 at high temperatures , 1999 .

[109]  R. Birgeneau,et al.  Random fields and three-dimensional Ising models: Co/sub x/Zn/sub 1-x/F/sub 2/ , 1983 .

[110]  S. Vakhrushev,et al.  Effect of electric field on neutron scattering in lead magnoniobate , 1998 .

[111]  A. Kania Flux Growth and Dielectric Studies of (1-x)PbMg1/3Ta2/3O3−xPbTiO3 Single Crystals , 2008 .

[112]  K. Bassler,et al.  Depth-dependent ordering, two-length-scale phenomena, and crossover behavior in a crystal featuring a skin layer with defects , 2009, 0912.3046.

[113]  J. M. Cowley,et al.  Short-range ordering in PbMg1/3Nb2/3O3 , 1979 .

[114]  Andrew G. Glen,et al.  APPL , 2001 .

[115]  A. Slodczyk,et al.  Role of the TiO6 octahedra on the ferroelectric and piezoelectric behaviour of the poled PbMg1/3Nb2/3O3–xPbTiO3 (PMN–PT) single crystal and textured ceramic , 2008 .

[116]  R. Lathe Phd by thesis , 1988, Nature.

[117]  G. Calvarin,et al.  Structural study of a poled PbMg13Nb23O3 ceramic at low temperature , 1991 .

[118]  Stanislav Kamba,et al.  Lattice Dynamics and Central-Mode Phenomena in the Dielectric Response of Ferroelectrics and Related Materials , 2004 .

[119]  Yoseph Imry,et al.  Random-Field Instability of the Ordered State of Continuous Symmetry , 1975 .

[120]  G. Shirane,et al.  Neutron elastic diffuse scattering study ofPb(Mg1/3Nb2/3)O3 , 2003, cond-mat/0308170.

[121]  G. Burns,et al.  Index of refraction in ‘dirty’ displacive ferroelectrics☆ , 1973 .

[122]  Hirota,et al.  Origin of the second length scale above the magnetic-spiral phase of Tb. , 1993, Physical review letters.

[123]  V. Isupov,et al.  Relaxation polarization of PbMg 1/3Nb2/3O3(PMN)-A ferroelectric with a diffused phase transition , 1973 .

[124]  C. Elissalde,et al.  High-frequency dielectric relaxation in oxyfluoride perovskite ceramics , 1992 .

[125]  A. Aharony,et al.  Random field effects in disordered anisotropic antiferromagnets , 1979 .

[126]  E. Kisi,et al.  Search for the X-phase in poled PZN–PT using very high-resolution single-crystal neutron diffraction , 2007 .

[127]  J. Nosek,et al.  Infrared and Raman spectroscopy of [Pb(Zn1/3Nb2/3)O3]0.92–[PbTiO3]0.08 and [Pb(Mg1/3Nb2/3)O3]0.71–[PbTiO3]0.29 single crystals , 2003 .

[128]  H. Mao,et al.  High-pressure Brillouin scattering of Pb(Mg 1/3 Nb 2/3 )O 3 , 2009 .

[129]  J. Scott Soft-mode spectroscopy: Experimental studies of structural phase transitions , 1974 .

[130]  Martin Kempa,et al.  Phase-sensitive time-domain terahertz reflection spectroscopy , 2003 .

[131]  R. Cowley THE LATTICE DYNAMICS OF AN ANHARMONIC CRYSTAL , 1963 .

[132]  S. Gvasaliya,et al.  Neutron diffuse scattering from PbMg1/3Ta2/3O3 relaxor ferroelectric , 2003 .

[133]  H. Cummins,et al.  Light Scattering near Phase Transitions , 1983 .

[134]  A. Maradudin,et al.  Limiting Optical Frequencies in Alkali Halide Crystals , 1961 .

[135]  S. Gvasaliya,et al.  On the existence of the relaxation mode in relaxor ferroelectrics , 2004 .

[136]  G. Shirane,et al.  Temperature Dependence of the Soft Ferroelectric Mode in KTa O 3 , 1967 .

[137]  Park,et al.  Soft phonon anomalies in the relaxor ferroelectric Pb(Zn(1/3)Nb(2/3))0.92Ti0.08O3 , 2000, Physical review letters.

[138]  Y. Feng,et al.  Synchrotron X-ray scattering study of lead magnoniobate relaxor ferroelectric crystals , 1996 .

[139]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[140]  S. Gvasaliya,et al.  Disorder and relaxation mode in the lattice dynamics of thePbMg1/3Nb2/3O3relaxor ferroelectric , 2003, cond-mat/0311097.

[141]  K. Knight,et al.  Rhombohedral to cubic phase transition in the relaxor ferroelectric PZN , 2006 .

[142]  A. Kania,et al.  Cubic–tetragonal–orthorhombic phase transition sequence in 0.5PbMg1/3Nb2/3O3–0.5PbTiO3 and 0.36PbMg1/3Nb2/3O3–0.64PbTiO3 single crystals , 2006 .

[143]  Yury I. Bychkov,et al.  Sov Phys Tech Phys , 1975 .

[144]  S. Gvasaliya,et al.  Phonons and fractons in the vibration spectrum of the relaxor ferroelectric PbMg1/3Nb2/3O3 , 1999 .

[145]  K. Hirota,et al.  Neutron and X-ray Scattering Studies of Relaxors , 2006 .

[146]  E. Kisi,et al.  Crystal structure of the relaxor ferroelectric PZN: demise of the ‘X-phase’ , 2005 .

[147]  R. Pirc,et al.  SPHERICAL RANDOM-BOND-RANDOM-FIELD MODEL OF RELAXOR FERROELECTRICS , 1999 .

[148]  G. Shirane,et al.  The non-rhombohedral low-temperature structure of PMN-10% PT , 2004 .

[149]  Yoshizawa,et al.  Temporal phase transition in the three-dimensional random-field Ising model. , 1985, Physical review letters.

[150]  H. Orihara,et al.  Raman Scattering in (1-x)Pb(Mg1/3Nb2/3)O3–xPbTiO3 , 2001 .

[151]  J. Imbrie Lower critical dimension of the random-field Ising model , 1984 .

[152]  M. Hagen,et al.  Anomalous dynamical effects in calcite , 1998 .

[153]  D. Viehland,et al.  Interplay between static and dynamic polar correlations in relaxor Pb ( Mg 1 / 3 Nb 2 / 3 ) O 3 , 2010, 1002.0716.

[154]  P. Davies,et al.  Domain Growth in Pb(Mg1/3Ta2/3)O3 Perovskite Relaxor Ferroelectric Oxides , 1997 .

[155]  R. Cowley,et al.  Relationship of normal modes of vibration of strontium titanate and its antiferroelectric phase transition at 110°K , 1969 .

[156]  van der Klink JJ,et al.  Polar metastability and an electric-field-induced phase transition in the disordered perovskite Pb(Mg1/3Nb2/3)O3. , 1993, Physical review. B, Condensed matter.

[157]  J. Als-Nielsen,et al.  Elements of Modern X-ray Physics , 2001 .

[158]  G. V. Chester,et al.  Solid-State Physics , 1962, Nature.

[159]  A. Y. Wu,et al.  Elastic moduli of PbZrO3andPbMg13Nb23O3between 1.5 and 298 K: Anomalies inPbMg13Nb23O3; Debye temperatures and heat-capacity interpretation , 1983 .

[160]  Guangyong Xu,et al.  Phase instability induced by polar nanoregions in a relaxor ferroelectric system. , 2008, Nature materials.

[161]  A. Kania,et al.  Distribution of relaxation times in PMN single crystal , 2005 .

[162]  G. Burns,et al.  'Dirty' displacive ferroelectrics , 1973 .

[163]  B. Halperin,et al.  Defects and the central peak near structural phase transitions , 1976 .

[164]  X. Tan,et al.  Electric field-induced phase transitions in (111)-, (110)-, and (100)-oriented Pb(Mg1∕3Nb2∕3)O3 single crystals , 2007 .

[165]  A. Tagantsev,et al.  Dielectric properties of 1:1 ordered Pb(Mg1/3Ta2/3)O3 ceramics , 2005 .

[166]  S. Kojima,et al.  Anomalous field-induced effects in the sound velocity in lead magnesium niobate probed by micro-Brillouin scattering , 2004 .

[167]  Shapiro,et al.  q dependence of the central peak in the inelastic-neutron-scattering spectrum of SrTiO3. , 1993, Physical review. B, Condensed matter.

[168]  S. Kojima,et al.  Relaxation mode in 0 . 6 5 P b ( M g 1 / 3 Nb 2 / 3 ) O 3 − 0.35 PbTiO 3 relaxor single crystals studied by micro-Brillouin scattering , 2000 .

[169]  T. Smirnova,et al.  Preceding paraphases in “diffuse transition” ferroelectrics , 1989 .

[170]  M. Born,et al.  Dynamical Theory of Crystal Lattices , 1954 .

[171]  S. Vakhrushev,et al.  Inelastic and critical neutron scattering in the ergodic phase of the relaxor ferroelectric PbMg1/3Nb2/3O3 , 2002 .

[172]  R. Birgeneau,et al.  Strong Influence of the Diffuse Component on the Lattice Dynamics in Pb(Mg1/3Nb2/3)O3 , 2004, cond-mat/0404086.

[173]  S. Pennycook,et al.  Determination of the ordered structures of Pb(Mg1/3Nb2/3)O3 and Ba(Mg1/3Nb2/3)O3 by atomic-resolution Z-contrast imaging , 1998 .

[174]  G. Shirane,et al.  Neutron Scattering with a Triple-Axis Spectrometer: Basic Techniques , 2002 .

[175]  G. Briggs,et al.  Surface Brillouin Scattering—Extending Surface Wave Measurements to 20 GHz , 1995 .

[176]  Kevin Barraclough,et al.  I and i , 2001, BMJ : British Medical Journal.

[177]  A. Glazer,et al.  Simple ways of determining perovskite structures , 1975 .

[178]  A. Bhalla,et al.  Cation arrangement in the complex perovskites and vibrational spectra , 1998 .

[179]  Z. Ye,et al.  Relaxor Ferroelectric Complex Perovskites: Structure, Properties and Phase Transitions , 1998 .

[180]  M. Woolfson Theory of X-ray and thermal-neutron scattering by real crystals , 1971 .

[181]  G. Smolensky,et al.  Brillouin scattering in ferroelectrical Pb3MgNb2O9 , 1976 .

[182]  A. Kania,et al.  Local phenomena of(1−x)PbMg1/3Nb2/3O3−xPbTiO3single crystals(0≤x≤0.38)studied by Raman scattering , 2008 .

[183]  I. Swainson,et al.  Soft phonon columns on the edge of the Brillouin zone in the relaxor PbMg1/3Nb2/3O3 , 2009, 0905.1421.

[184]  R. Cowley The phase transition of strontium titanate , 1996, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[185]  T. Shrout,et al.  Characteristics of relaxor-based piezoelectric single crystals for ultrasonic transducers , 1997, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[186]  N. Setter,et al.  Soft and central mode behaviour in PbMg1/3Nb2/3O3 relaxor ferroelectric , 2004, Journal of physics. Condensed matter : an Institute of Physics journal.

[187]  E. Suard,et al.  Local and long range polar order in the relaxor-ferroelectric compounds PbMg 1 / 3 Nb 2 / 3 O 3 and PbMg 0.3 Nb 0.6 Ti 0.1 O 3 , 2001 .

[188]  G. Shirane,et al.  Three-dimensional mapping of diffuse scattering in Pb(Zn{sub 1/3}Nb{sub 2/3})O{sub 3}-xPbTiO{sub 3} , 2004 .