Electrical Transport in Colloidal Quantum Dot Films.

In nanocrystal solids, the small density of states of quantum dots makes it difficult to achieve metallic conductivity without band-like transport. However, to achieve band-like transport, the energy scale of the disorder should be smaller than the coupling energy. This is unlikely with the present systems due to the size polydispersivity. Transport by hopping may nevertheless lead to an increased mobility with decreasing temperature for some temperature range, and such behavior at finite temperature is not proof of band-like conduction. To date, at low temperature, variable range hopping in semiconductor or weakly coupled metal nanocrystal solids dominates transport, as in disordered semiconductors.

[1]  Al-Amin Dhirani,et al.  Charge transport in nanoparticle assemblies. , 2008, Chemical reviews.

[2]  Ridley,et al.  All-Inorganic Field Effect Transistors Fabricated by Printing. , 1999, Science.

[3]  A. Wacker Semiconductor superlattices: a model system for nonlinear transport , 2001, cond-mat/0107207.

[4]  P. Guyot-Sionnest,et al.  Electronic transport of n-type CdSe quantum dot films: Effect of film treatment , 2006 .

[5]  B. Statt,et al.  Metal to insulator transition in films of molecularly linked gold nanoparticles. , 2006, Physical review letters.

[6]  M. Kovalenko,et al.  Band-like transport, high electron mobility and high photoconductivity in all-inorganic nanocrystal arrays. , 2011, Nature nanotechnology.

[7]  Christopher B. Murray,et al.  Structural diversity in binary nanoparticle superlattices , 2006, Nature.

[8]  Boris I Shklovskii,et al.  Coulomb gap and low temperature conductivity of disordered systems , 1975 .

[9]  H. V. D. van der Zant,et al.  Unity quantum yield of photogenerated charges and band-like transport in quantum-dot solids. , 2011, Nature nanotechnology.

[10]  David Cahen,et al.  Comparison of Electronic Transport Measurements on Organic Molecules , 2003 .

[11]  P. Guyot-Sionnest,et al.  Mid-infrared HgTe colloidal quantum dot photodetectors , 2011 .

[12]  M. Kovalenko,et al.  Colloidal Nanocrystals with Molecular Metal Chalcogenide Surface Ligands , 2009, Science.

[13]  Brown,et al.  Transition to Ohmic conduction in ultrasmall tunnel junctions. , 1986, Physical review. B, Condensed matter.

[14]  Sergey V. Gaponenko,et al.  Evolution from individual to collective electron states in a dense quantum dot ensemble , 1999 .

[15]  P. Guyot-Sionnest,et al.  Fast voltammetric and electrochromic response of semiconductor nanocrystal thin films , 2003 .

[16]  Christopher B. Murray,et al.  Synthesis and Characterization of Monodisperse Nanocrystals and Close-Packed Nanocrystal Assemblies , 2000 .

[17]  Nevill Mott,et al.  Conduction in glasses containing transition metal ions , 1968 .

[18]  Prashant V Kamat,et al.  Beyond photovoltaics: semiconductor nanoarchitectures for liquid-junction solar cells. , 2010, Chemical reviews.

[19]  Moungi G. Bawendi,et al.  Photoconductivity in CdSe quantum dot solids , 2000 .

[20]  Jiyoul Lee,et al.  High carrier densities achieved at low voltages in Ambipolar PbSe nanocrystal thin-film transistors. , 2009, Nano letters.

[21]  B. Dubertret,et al.  Colloidal nanoplatelets with two-dimensional electronic structure. , 2011, Nature materials.

[22]  Heinrich M. Jaeger,et al.  Electronic Transport in Metal Nanocrystal Arrays: The Effect of Structural Disorder on Scaling Behavior , 2001 .

[23]  H. Queisser,et al.  Detailed Balance Limit of Efficiency of p‐n Junction Solar Cells , 1961 .

[24]  F. Urbach The Long-Wavelength Edge of Photographic Sensitivity and of the Electronic Absorption of Solids , 1953 .

[25]  J. Luther,et al.  Peak External Photocurrent Quantum Efficiency Exceeding 100% via MEG in a Quantum Dot Solar Cell , 2011, Science.

[26]  H. Mcconnell,et al.  Intramolecular Charge Transfer in Aromatic Free Radicals , 1961 .

[27]  Matt Law,et al.  Dependence of carrier mobility on nanocrystal size and ligand length in PbSe nanocrystal solids. , 2010, Nano letters.

[28]  A. Houtepen,et al.  Reappraisal of variable-range hopping in quantum-dot solids. , 2008, Nano letters.

[29]  M. Rosticher,et al.  Electron cotunneling transport in gold nanocrystal arrays. , 2011, Physical review letters.

[30]  H. Weller,et al.  Potential-Dependent Electron Injection in Nanoporous Colloidal ZnO Films , 1995 .

[31]  Lin-Wang Wang,et al.  Charge Transport in a Quantum Dot Supercrystal , 2011 .

[32]  D. Vanmaekelbergh,et al.  Staircase in the electron mobility of a ZnO quantum dot assembly due to shell filling. , 2002, Physical review letters.

[33]  B. Shklovskii,et al.  Density of states and conductivity of a granular metal or an array of quantum dots , 2004, cond-mat/0403703.

[34]  Leroy L. Chang,et al.  New Transport Phenomenon in a Semiconductor "Superlattice" , 1974 .

[35]  Richard J. Saykally,et al.  Reversible Tuning of Silver Quantum Dot Monolayers Through the Metal-Insulator Transition , 1997 .

[36]  P. Liljeroth,et al.  Electron-conducting quantum dot solids: novel materials based on colloidal semiconductor nanocrystals. , 2005, Chemical Society reviews.

[37]  E. Sargent Infrared photovoltaics made by solution processing , 2009 .

[38]  Philippe Guyot-Sionnest,et al.  Electrochromic semiconductor nanocrystal films , 2002 .

[39]  Middleton,et al.  Collective transport in arrays of small metallic dots. , 1993, Physical review letters.

[40]  M. Kovalenko,et al.  Prospects of colloidal nanocrystals for electronic and optoelectronic applications. , 2010, Chemical reviews.

[41]  H. Hillhouse,et al.  Solar cells from colloidal nanocrystals: Fundamentals, materials, devices, and economics , 2009 .

[42]  M. Kastner,et al.  Photoconductivity Studies of Treated CdSe Quantum Dot Films Exhibiting Increased Exciton Ionization Efficiency , 2004 .

[43]  H. Jaeger,et al.  Multiple cotunneling in large quantum dot arrays. , 2005, Physical review letters.

[44]  Philippe Guyot-Sionnest,et al.  n-type colloidal semiconductor nanocrystals , 2000, Nature.

[45]  D. Wiersma,et al.  Fifty years of Anderson localization , 2009 .

[46]  D. Ginger,et al.  Charge injection and transport in films of CdSe nanocrystals , 2000 .

[47]  Philippe Guyot-Sionnest,et al.  Variable range hopping conduction in semiconductor nanocrystal solids. , 2004, Physical review letters.

[48]  Marija Drndic,et al.  Coulomb blockade and hopping conduction in PbSe quantum dots. , 2005, Physical review letters.

[49]  P. Guyot-Sionnest,et al.  Conduction in charged PbSe nanocrystal films. , 2005, The journal of physical chemistry. B.

[50]  M. Grätzel,et al.  A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films , 1991, Nature.

[51]  Dmitri V Talapin,et al.  PbSe Nanocrystal Solids for n- and p-Channel Thin Film Field-Effect Transistors , 2005, Science.