Bayesian methods for neural networks

In a vertical cylindrical liquid storage tank having a circular floating roof, an improved sealing means including an elastomeric composite strip impermeable to vapor connected at its inner edge by an essentially vapor tight joint to the roof edge and extending as an annulus outwardly to the tank inner side wall, the elastomeric composite strip comprising a plurality of flexible resilient elongated stiffeners laterally positioned and embedded in elastomeric material, and the elongated stiffeners extending from the strip edge joined to the roof and terminating short of the strip edge at the tank wall.

[1]  R. E. Kalman,et al.  New Results in Linear Filtering and Prediction Theory , 1961 .

[2]  E. Hannan Testing for a Jump in the Spectral Function , 1961 .

[3]  C. Striebel,et al.  On the maximum likelihood estimates for linear dynamic systems , 1965 .

[4]  Andrew H. Jazwinski,et al.  Adaptive filtering , 1969, Autom..

[5]  W. K. Hastings,et al.  Monte Carlo Sampling Methods Using Markov Chains and Their Applications , 1970 .

[6]  R. Mehra On the identification of variances and adaptive Kalman filtering , 1970 .

[7]  R. Mehra On-line identification of linear dynamic systems with applications to Kalman filtering , 1971 .

[8]  H. Sorenson,et al.  Recursive bayesian estimation using gaussian sums , 1971 .

[9]  G. Wahba,et al.  A completely automatic french curve: fitting spline functions by cross validation , 1975 .

[10]  R. Snee,et al.  Ridge Regression in Practice , 1975 .

[11]  B. Tapley,et al.  Adaptive sequential estimation with unknown noise statistics , 1976 .

[12]  G. Schwarz Estimating the Dimension of a Model , 1978 .

[13]  M. Stone Cross-validation:a review 2 , 1978 .

[14]  R. Engle,et al.  Alternative Algorithms for the Estimation of Dynamic Factor , 1983 .

[15]  Emile H. L. Aarts,et al.  Simulated Annealing: Theory and Applications , 1987, Mathematics and Its Applications.

[16]  G. Kitagawa Non-Gaussian State—Space Modeling of Nonstationary Time Series , 1987 .

[17]  Brian D. Ripley,et al.  Stochastic Simulation , 2005 .

[18]  Sharad Singhal,et al.  Training Multilayer Perceptrons with the Extende Kalman Algorithm , 1988, NIPS.

[19]  Yoh-Han Pao,et al.  Adaptive pattern recognition and neural networks , 1989 .

[20]  Yann LeCun,et al.  Optimal Brain Damage , 1989, NIPS.

[21]  Kurt Hornik,et al.  Multilayer feedforward networks are universal approximators , 1989, Neural Networks.

[22]  F. Girosi,et al.  Networks for approximation and learning , 1990, Proc. IEEE.

[23]  Kumpati S. Narendra,et al.  Identification and control of dynamical systems using neural networks , 1990, IEEE Trans. Neural Networks.

[24]  Mark E. Oxley,et al.  Comparative Analysis of Backpropagation and the Extended Kalman Filter for Training Multilayer Perceptrons , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[25]  L. Cooper,et al.  When Networks Disagree: Ensemble Methods for Hybrid Neural Networks , 1992 .

[26]  S Z Qin,et al.  Comparison of four neural net learning methods for dynamic system identification , 1992, IEEE Trans. Neural Networks.

[27]  Francesco Palmieri,et al.  Optimal filtering algorithms for fast learning in feedforward neural networks , 1992, Neural Networks.

[28]  L. Jones A Simple Lemma on Greedy Approximation in Hilbert Space and Convergence Rates for Projection Pursuit Regression and Neural Network Training , 1992 .

[29]  David J. C. MacKay,et al.  Bayesian Interpolation , 1992, Neural Computation.

[30]  Takayuki Yamada,et al.  Dynamic system identification using neural networks , 1993, IEEE Trans. Syst. Man Cybern..

[31]  George Cybenko,et al.  Ill-Conditioning in Neural Network Training Problems , 1993, SIAM J. Sci. Comput..

[32]  Jun S. Liu,et al.  Sequential Imputations and Bayesian Missing Data Problems , 1994 .

[33]  Nicholas G. Polson,et al.  On the Geometric Convergence of the Gibbs Sampler , 1994 .

[34]  Anthony J. Robinson,et al.  An application of recurrent nets to phone probability estimation , 1994, IEEE Trans. Neural Networks.

[35]  Peter M. Williams,et al.  Bayesian Regularization and Pruning Using a Laplace Prior , 1995, Neural Computation.

[36]  David Mackay,et al.  Probable networks and plausible predictions - a review of practical Bayesian methods for supervised neural networks , 1995 .

[37]  Todd K. Leen,et al.  From Data Distributions to Regularization in Invariant Learning , 1995, Neural Computation.

[38]  Yoshua Bengio,et al.  Pattern Recognition and Neural Networks , 1995 .

[39]  Visakan Kadirkamanathan,et al.  Recursive Estimation of Dynamic Modular RBF Networks , 1995, NIPS.

[40]  Robert A. Jacobs,et al.  Methods For Combining Experts' Probability Assessments , 1995, Neural Computation.

[41]  Jun S. Liu,et al.  Blind Deconvolution via Sequential Imputations , 1995 .

[42]  Lennart Ljung,et al.  Nonlinear black-box modeling in system identification: a unified overview , 1995, Autom..

[43]  Ah Chung Tsoi,et al.  Local minima and generalization , 1996, Proceedings of International Conference on Neural Networks (ICNN'96).

[44]  David Lowe,et al.  Practical methods of tracking of nonstationary time series applied to real-world data , 1996, Defense + Commercial Sensing.

[45]  Federico Girosi,et al.  On the Relationship between Generalization Error, Hypothesis Complexity, and Sample Complexity for Radial Basis Functions , 1996, Neural Computation.

[46]  R. Kohn,et al.  Nonparametric regression using Bayesian variable selection , 1996 .

[47]  Michael Isard,et al.  Contour Tracking by Stochastic Propagation of Conditional Density , 1996, ECCV.

[48]  T. Higuchi Monte carlo filter using the genetic algorithm operators , 1997 .

[49]  P. Green,et al.  On Bayesian Analysis of Mixtures with an Unknown Number of Components (with discussion) , 1997 .

[50]  Jun S. Liu,et al.  Sequential Monte Carlo methods for dynamic systems , 1997 .

[51]  Alan D. Marrs An Application of Reversible-Jump MCMC to Multivariate Spherical Gaussian Mixtures , 1997, NIPS.

[52]  W. A. Wright Neural network regression with input uncertainty , 1998, Neural Networks for Signal Processing VIII. Proceedings of the 1998 IEEE Signal Processing Society Workshop (Cat. No.98TH8378).

[53]  Peter Müller,et al.  Issues in Bayesian Analysis of Neural Network Models , 1998, Neural Computation.

[54]  Markus Hürzeler,et al.  Monte Carlo Approximations for General State-Space Models , 1998 .

[55]  Andrew Blake,et al.  Learning dynamical models using expectation-maximisation , 1998, Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271).

[56]  Gavin Smith,et al.  Speech Modelling Using Subspace and EM Techniques , 1999, NIPS.

[57]  Christophe Andrieu,et al.  Robust Full Bayesian Methods for Neural Networks , 1999, NIPS.

[58]  Jun S. Liu,et al.  Sequential importance sampling for nonparametric Bayes models: The next generation , 1999 .

[59]  Zoubin Ghahramani,et al.  A Unifying Review of Linear Gaussian Models , 1999, Neural Computation.

[60]  M. Pitt,et al.  Filtering via Simulation: Auxiliary Particle Filters , 1999 .

[61]  Hoon Kim,et al.  Monte Carlo Statistical Methods , 2000, Technometrics.

[62]  Andrew H. Gee,et al.  Dynamic Learning with the EM Algorithm for Neural Networks , 2000, J. VLSI Signal Process..

[63]  Andrew H. Gee,et al.  Hierarchical Bayesian Models for Regularization in Sequential Learning , 2000, Neural Computation.

[64]  Radford M. Neal Annealed importance sampling , 1998, Stat. Comput..

[65]  Nando de Freitas,et al.  Sequential Monte Carlo Methods for Neural Networks , 2001, Sequential Monte Carlo Methods in Practice.